lunes, 4 de marzo de 2013

GUIA TRABAJO # 3


HARDWARE

El término hardware se refiere a todas las partes tangibles de un sistema informático; sus componentes son: eléctricos, electrónicos, electromecánicos y mecánicos.1 Son cables, gabinetes o cajas, periféricos de todo tipo y cualquier otro elemento físico involucrado; contrariamente, el soporte lógico es intangible y es llamado software. El término es propio del idioma inglés (literalmente traducido: partes duras), su traducción al español no tiene un significado acorde, por tal motivo se la ha adoptado tal cual es y suena; la Real Academia Española lo define como «Conjunto de los componentes que integran la parte material de una computadora».2 El término, aunque sea lo más común, no solamente se aplica a las computadoras; del mismo modo, también un robot, un teléfono móvil, una cámara fotográfica o un reproductor multimedia poseen hardware (y software).3 4
La historia del hardware de computador se puede clasificar en cuatro generaciones, cada una caracterizada por un cambio tecnológico de importancia. Una primera delimitación podría hacerse entre hardware básico, el estrictamente necesario para el funcionamiento normal del equipo, y complementario, el que realiza funciones específicas.
Un sistema informático se compone de una unidad central de procesamiento (UCP/CPU), encargada de procesar los datos, uno o varios periféricos de entrada, los que permiten el ingreso de la información y uno o varios periféricos de salida, los que posibilitan dar salida (normalmente en forma visual o auditiva) a los datos procesados.

Clasificación del hardware



Microcontrolador Motorola 68HC11 y chips de soporte que podrían constituir el hardware de un equipo electrónico industrial.
Una de las formas de clasificar el hardware es en dos categorías: por un lado, el "básico", que abarca el conjunto de componentes indispensables necesarios para otorgar la funcionalidad mínima a una computadora; y por otro lado, el hardware "complementario", que, como su nombre indica, es el utilizado para realizar funciones específicas (más allá de las básicas), no estrictamente necesarias para el funcionamiento de la computadora.
Así es que: un medio de entrada de datos, la unidad central de procesamiento (C.P.U.), la memoria RAM, un medio de salida de datos y un medio de almacenamiento constituyen el "hardware básico".
Los medios de entrada y salida de datos estrictamente indispensables dependen de la aplicación: desde el punto de vista de un usuario común, se debería disponer, al menos, de un teclado y un monitor para entrada y salida de información, respectivamente; pero ello no implica que no pueda haber una computadora (por ejemplo controlando un proceso) en la que no sea necesario teclado ni monitor; bien puede ingresar información y sacar sus datos procesados, por ejemplo, a través de una placa de adquisición/salida de datos.
Las computadoras son aparatos electrónicos capaces de interpretar y ejecutar instrucciones programadas y almacenadas en su memoria; consisten básicamente en operaciones aritmético-lógicas y de entrada/salida.9 Se reciben las entradas (datos), se las procesa y almacena (procesamiento), y finalmente se producen las salidas (resultados del procesamiento). Por ende todo sistema informático tiene, al menos, componentes y dispositivos hardware dedicados a alguna de las funciones antedichas;10 a saber:
Procesamiento: Unidad Central de Proceso o CPU

www.youtube.com

Unidad central de procesamiento





Microprocesador de 64 bits doble núcleo, el AMD Athlon 64 X2 3600.
La CPU, siglas en inglés de Unidad Central de Procesamiento, es el componente fundamental del computador, encargado de interpretar y ejecutar instrucciones y de procesar datos.12 En los computadores modernos, la función de la CPU la realiza uno o más microprocesadores. Se conoce como microprocesador a una CPU que es manufacturada como un único circuito integrado.
Un servidor de red o una máquina de cálculo de alto rendimiento (supercomputación), puede tener varios, incluso miles de microprocesadores trabajando simultáneamente o en paralelo (multiprocesamiento); en este caso, todo ese conjunto conforma la CPU de la máquina.
Las unidades centrales de proceso (CPU) en la forma de un único microprocesador no sólo están presentes en las computadoras personales (PC), sino también en otros tipos de dispositivos que incorporan una cierta capacidad de proceso o "inteligencia electrónica", como pueden ser: controladores de procesos industriales, televisores, automóviles, calculadores, aviones, teléfonos móviles, electrodomésticos, juguetes y muchos más. Actualmente los diseñadores y fabricantes más populares de microprocesadores de PC son Intel y AMD; y para el mercado de dispositivos móviles y de bajo consumo, los principales son Samsung, Qualcomm y Texas Instruments.


Placa base del teléfono móvil Samsung Galaxy Spica, se pueden distinguir varios "System-on-a-Chip" soldados en ella
El microprocesador se monta en la llamada placa base, sobre un zócalo conocido como zócalo de CPU, que permite las conexiones eléctricas entre los circuitos de la placa y el procesador. Sobre el procesador ajustado a la placa base se fija un disipador térmico de un material con elevada conductividad térmica, que por lo general es de aluminio, y en algunos casos de cobre. Éste es indispensable en los microprocesadores que consumen bastante energía, la cual, en gran parte, es emitida en forma de calor: en algunos casos pueden consumir tanta energía como una lámpara incandescente (de 40 a 130 vatios).
Adicionalmente, sobre el disipador se acopla uno o dos ventiladores (raramente más), destinados a forzar la circulación de aire para extraer más rápidamente el calor acumulado por el disipador y originado en el microprocesador. Complementariamente, para evitar daños por efectos térmicos, también se suelen instalar sensores de temperatura del microprocesador y sensores de revoluciones del ventilador, así como sistemas automáticos que controlan la cantidad de revoluciones por unidad de tiempo de estos últimos.
La gran mayoría de los circuitos electrónicos e integrados que componen el hardware del computador van montados en la placa madre.
La placa base, también conocida como placa madre o con el anglicismo board,13 es un gran circuito impreso sobre el que se suelda elchipset, las ranuras de expansión (slots), los zócalos, conectores, diversos integrados, etc. Es el soporte fundamental que aloja y comunica a todos los demás componentes: Procesador, módulos de memoria RAM, tarjetas gráficas, tarjetas de expansión, periféricos de entrada y salida. Para comunicar esos componentes, la placa base posee una serie de buses mediante los cuales se trasmiten los datos dentro y hacia afuera del sistema.
La tendencia de integración ha hecho que la placa base se convierta en un elemento que incluye a la mayoría de las funciones básicas (vídeo, audio, red, puertos de varios tipos), funciones que antes se realizaban con tarjetas de expansión. Aunque ello no excluye la capacidad de instalar otras tarjetas adicionales específicas, tales como capturadoras de vídeo, tarjetas de adquisición de datos, etc.
También, la tendencia en los últimos años es eliminar elementos separados en la placa base e integrarlos al microprocesador. En ese sentido actualmente se encuentran sistemas denominados System on a Chip que consiste en un único circuito integrado que integra varios módulos electrónicos en su interior, tales como un procesador, un controlador de memoria, una GPU, Wi-Fi, bluetooth, etc. La mejora más notable en esto está en la reducción de tamaño frente a igual funcionalidad con módulos electrónicos separados. La figura muestra una aplicación típica, en la placa principal de un teléfono móvil.

http://es.wikipedia.org/wiki/Hardware

Memoria RAM




Modulos de memoria RAM instalados.
Artículo principal: Memoria RAM.
Del inglés Random Access Memory, literalmente significa "memoria de acceso aleatorio". El término tiene relación con la característica de presentar iguales tiempos de acceso a cualquiera de sus posiciones (ya sea para lectura o para escritura). Esta particularidad también se conoce como "acceso directo", en contraposición al Acceso secuencial.
La RAM es la memoria utilizada en una computadora para el almacenamiento transitorio y de trabajo (no masivo). En la RAM se almacena temporalmente la información, datos y programas que la Unidad de Procesamiento (CPU) lee, procesa y ejecuta. La memoria RAM es conocida como Memoria principal de la computadora, también como "Central o de Trabajo"; 14 a diferencia de las llamadas memorias auxiliares, secundarias o de almacenamiento masivo (como discos duros, unidades de estado sólido, cintas magnéticas u otras memorias).
Las memorias RAM son, comúnmente, volátiles; lo cual significa que pierden rápidamente su contenido al interrumpir su alimentación eléctrica.
Las más comunes y utilizadas como memoria central son "dinámicas" (DRAM), lo cual significa que tienden a perder sus datos almacenados en breve tiempo (por descarga, aún estando con alimentación eléctrica), por ello necesitan un circuito electrónico específico que se encarga de proveerle el llamado "refresco" (de energía) para mantener su información.
La memoria RAM de un computador se provee de fábrica e instala en lo que se conoce como “módulos”. Ellos albergan varios circuitos integrados de memoria DRAM que, conjuntamente, conforman toda la memoria principal.


http://es.wikipedia.org/wiki/Hardware


Software



Los procesadores de texto están incluidos en la categoría de software de aplicación. Las imágenes son capturas de pantalla de OpenOffice (arriba) y KWord (abajo).
Se conoce como software1 al equipamiento lógico o soporte lógico de un sistema informático, el que comprende el conjunto de los componentes lógicos necesarios que hacen posible la realización de tareas específicas, en contraposición a los componentes físicos que son llamados hardware.
Los componentes lógicos incluyen, entre muchos otros, las aplicaciones informáticas; tales como el procesador de texto, que permite al usuario realizar todas las tareas concernientes a la edición de textos; el llamado software de sistema, tal como el sistema operativo, que básicamente permite al resto de los programas funcionar adecuadamente, facilitando también la interacción entre los componentes físicos y el resto de las aplicaciones, y proporcionando una interfaz con el usuario.
El anglicismo "software" es el más ampliamente difundido al referirse a este concepto, especialmente en la jerga técnica; el término sinónimo "logical", derivado del término francés "logiciel", sobre todo es utilizado en países y zonas de influencia francesa.

www.youtube.com.co


Proceso de creación del software

Artículo principal: Proceso para el desarrollo de software.
Se define como proceso al conjunto ordenado de pasos a seguir para llegar a la solución de un problema u obtención de un producto, en este caso particular, para lograr un producto software que resuelva un problema específico.
El proceso de creación de software puede llegar a ser muy complejo, dependiendo de su porte, características y criticidad del mismo. Por ejemplo la creación de un sistema operativo es una tarea que requiere proyecto, gestión, numerosos recursos y todo un equipo disciplinado de trabajo. En el otro extremo, si se trata de un sencillo programa (por ejemplo, la resolución de una ecuación de segundo orden), éste puede ser realizado por un solo programador (incluso aficionado) fácilmente. Es así que normalmente se dividen en tres categorías según su tamaño (líneas de código) o costo: de «pequeño», «mediano» y «gran porte». Existen varias metodologías para estimarlo, una de las más populares es el sistema COCOMO que provee métodos y un software (programa) que calcula y provee una aproximación de todos los costos de producción en un «proyecto software» (relación horas/hombre, costo monetario, cantidad de líneas fuente de acuerdo a lenguaje usado, etc.).
Considerando los de gran porte, es necesario realizar complejas tareas, tanto técnicas como de gerencia, una fuerte gestión y análisis diversos (entre otras cosas), la complejidad de ello ha llevado a que desarrolle una ingeniería específica para tratar su estudio y realización: es conocida como Ingeniería de Software.
En tanto que en los de mediano porte, pequeños equipos de trabajo (incluso un avezado analista-programador solitario) pueden realizar la tarea. Aunque, siempre en casos de mediano y gran porte (y a veces también en algunos de pequeño porte, según su complejidad), se deben seguir ciertas etapas que son necesarias para la construcción del software. Tales etapas, si bien deben existir, son flexibles en su forma de aplicación, de acuerdo a la metodología o proceso de desarrollo escogido y utilizado por el equipo de desarrollo o por el analista-programador solitario (si fuere el caso).
Los «procesos de desarrollo de software» poseen reglas preestablecidas, y deben ser aplicados en la creación del software de mediano y gran porte, ya que en caso contrario lo más seguro es que el proyecto no logre concluir o termine sin cumplir los objetivos previstos, y con variedad de fallos inaceptables (fracasan, en pocas palabras). Entre tales «procesos» los hay ágiles o livianos (ejemplo XP), pesados y lentos (ejemplo RUP), y variantes intermedias. Normalmente se aplican de acuerdo al tipo y porte del software a desarrollar, a criterio del líder (si lo hay) del equipo de desarrollo. Algunos de esos procesos son Programación Extrema (en inglés eXtreme Programming o XP), Proceso Unificado de Rational (en inglés Rational Unified Process o RUP), Feature Driven Development (FDD), etc.
Cualquiera sea el «proceso» utilizado y aplicado al desarrollo del software (RUP, FDD, XP, etc), y casi independientemente de él, siempre se debe aplicar un «modelo de ciclo de vida».6
Se estima que, del total de proyectos software grandes emprendidos, un 28% fracasan, un 46% caen en severas modificaciones que lo retrasan y un 26% son totalmente exitosos. 7
Cuando un proyecto fracasa, rara vez es debido a fallas técnicas, la principal causa de fallos y fracasos es la falta de aplicación de una buena metodología o proceso de desarrollo. Entre otras, una fuerte tendencia, desde hace pocas décadas, es mejorar las metodologías o procesos de desarrollo, o crear nuevas y concientizar a los profesionales de la informática a su utilización adecuada. Normalmente los especialistas en el estudio y desarrollo de estas áreas (metodologías) y afines (tales como modelos y hasta la gestión misma de los proyectos) son los ingenieros en software, es su orientación. Los especialistas en cualquier otra área de desarrollo informático (analista, programador, Lic. en informática, ingeniero en informática, ingeniero de sistemas, etc.) normalmente aplican sus conocimientos especializados pero utilizando modelos, paradigmas y procesos ya elaborados.
Es común para el desarrollo de software de mediano porte que los equipos humanos involucrados apliquen «metodologías propias», normalmente un híbrido de los procesos anteriores y a veces con criterios propios.
El proceso de desarrollo puede involucrar numerosas y variadas tareas6 , desde lo administrativo, pasando por lo técnico y hasta la gestión y el gerenciamiento. Pero, casi rigurosamente, siempre se cumplen ciertas etapas mínimas; las que se pueden resumir como sigue:
Captura, elicitación8 , especificación y análisis de requisitos (ERS)
Diseño
Codificación
Pruebas (unitarias y de integración)
Instalación y paso a producción
Mantenimiento
En las anteriores etapas pueden variar ligeramente sus nombres, o ser más globales, o contrariamente, ser más refinadas; por ejemplo indicar como una única fase (a los fines documentales e interpretativos) de «análisis y diseño»; o indicar como «implementación» lo que está dicho como «codificación»; pero en rigor, todas existen e incluyen, básicamente, las mismas tareas específicas.
En el apartado 4 del presente artículo se brindan mayores detalles de cada una de las etapas indicadas.
Modelos de proceso o ciclo de vida
Para cada una de las fases o etapas listadas en el ítem anterior, existen sub-etapas (o tareas). El modelo de proceso o modelo de ciclo de vida utilizado para el desarrollo, define el orden de las tareas o actividades involucradas,6 también define la coordinación entre ellas, y su enlace y realimentación. Entre los más conocidos se puede mencionar: modelo en cascada o secuencial, modelo espiral, modelo iterativo incremental. De los antedichos hay a su vez algunas variantes o alternativas, más o menos atractivas según sea la aplicación requerida y sus requisitos.7
Modelo cascada
Este, aunque es más comúnmente conocido como modelo en cascada es también llamado «modelo clásico», «modelo tradicional» o «modelo lineal secuencial».
El modelo en cascada puro difícilmente se utiliza tal cual, pues esto implicaría un previo y absoluto conocimiento de los requisitos, la no volatilidad de los mismos (o rigidez) y etapas subsiguientes libres de errores; ello sólo podría ser aplicable a escasos y pequeños sistemas a desarrollar. En estas circunstancias, el paso de una etapa a otra de las mencionadas sería sin retorno, por ejemplo pasar del diseño a la codificación implicaría un diseño exacto y sin errores ni probable modificación o evolución: «codifique lo diseñado sin errores, no habrá en absoluto variantes futuras». Esto es utópico; ya que intrínsecamente el software es de carácter evolutivo9 , cambiante y difícilmente libre de errores, tanto durante su desarrollo como durante su vida operativa.6


Modelo cascada puro o secuencial para el ciclo de vida del software.



Algún cambio durante la ejecución de una cualquiera de las etapas en este modelo secuencial implicaría reiniciar desde el principio todo el ciclo completo, lo cual redundaría en altos costos de tiempo y desarrollo. La Figura 2 muestra un posible esquema de el modelo en cuestión.6
Sin embargo, el modelo cascada en algunas de sus variantes es uno de los actualmente más utilizados10 , por su eficacia y simplicidad, más que nada en software de pequeño y algunos de mediano porte; pero nunca (o muy rara vez) se lo usa en su "forma pura", como se dijo anteriormente. En lugar de ello, siempre se produce alguna realimentación entre etapas, que no es completamente predecible ni rígida; esto da oportunidad al desarrollo de productos software en los cuales hay ciertas incertezas, cambios o evoluciones durante el ciclo de vida. Así por ejemplo, una vez capturados y especificados los requisitos (primera etapa) se puede pasar al diseño del sistema, pero durante esta última fase lo más probable es que se deban realizar ajustes en los requisitos (aunque sean mínimos), ya sea por fallas detectadas, ambigüedades o bien por que los propios requisitos han cambiado o evolucionado; con lo cual se debe retornar a la primera o previa etapa, hacer los reajuste pertinentes y luego continuar nuevamente con el diseño; esto último se conoce como realimentación. Lo normal en el modelo cascada será entonces la aplicación del mismo con sus etapas realimentadas de alguna forma, permitiendo retroceder de una a la anterior (e incluso poder saltar a varias anteriores) si es requerido.
De esta manera se obtiene el «modelo cascada realimentado», que puede ser esquematizado como lo ilustra la Figura 3.


 Modelo cascada realimentado para el ciclo de vida.


Lo dicho es, a grandes rasgos, la forma y utilización de este modelo, uno de los más usados y populares.6 El modelo cascada realimentado resulta muy atractivo, hasta ideal, si el proyecto presenta alta rigidez (pocos cambios, previsto no evolutivo), los requisitos son muy claros y están correctamente especificados.10
Hay más variantes similares al modelo: refino de etapas (más etapas, menores y más específicas) o incluso mostrar menos etapas de las indicadas, aunque en tal caso la faltante estará dentro de alguna otra. El orden de esas fases indicadas en el ítem previo es el lógico y adecuado, pero adviértase, como se dijo, que normalmente habrá realimentación hacia atrás.
El modelo lineal o en cascada es el paradigma más antiguo y extensamente utilizado, sin embargo las críticas a él (ver desventajas) han puesto en duda su eficacia. Pese a todo, tiene un lugar muy importante en la Ingeniería de software y continúa siendo el más utilizado; y siempre es mejor que un enfoque al azar.10
Desventajas del modelo cascada:6
Los cambios introducidos durante el desarrollo pueden confundir al equipo profesional en las etapas tempranas del proyecto. Si los cambios se producen en etapa madura (codificación o prueba) pueden ser catastróficos para un proyecto grande.
No es frecuente que el cliente o usuario final explicite clara y completamente los requisitos (etapa de inicio); y el modelo lineal lo requiere. La incertidumbre natural en los comienzos es luego difícil de acomodar.10
El cliente debe tener paciencia ya que el software no estará disponible hasta muy avanzado el proyecto. Un error detectado por el cliente (en fase de operación) puede ser desastroso, implicando reinicio del proyecto, con altos costos.
Modelos evolutivos
El software evoluciona con el tiempo.11 9 Los requisitos del usuario y del producto suelen cambiar conforme se desarrolla el mismo. Las fechas de mercado y la competencia hacen que no sea posible esperar a poner en el mercado un producto absolutamente completo, por lo que se aconsejable introducir una versión funcional limitada de alguna forma para aliviar las presiones competitivas.
En esas u otras situaciones similares los desarrolladores necesitan modelos de progreso que estén diseñados para acomodarse a una evolución temporal o progresiva, donde los requisitos centrales son conocidos de antemano, aunque no estén bien definidos a nivel detalle.
En el modelo cascada y cascada realimentado no se tiene demasiado en cuenta la naturaleza evolutiva del software11 , se plantea como estático, con requisitos bien conocidos y definidos desde el inicio.6
Los evolutivos son modelos iterativos, permiten desarrollar versiones cada vez más completas y complejas, hasta llegar al objetivo final deseado; incluso evolucionar más allá, durante la fase de operación.
Los modelos «iterativo incremental» y «espiral» (entre otros) son dos de los más conocidos y utilizados del tipo evolutivo.10
Modelo iterativo incremental
En términos generales, se puede distinguir, en la Figura 4, los pasos generales que sigue el proceso de desarrollo de un producto software. En el modelo de ciclo de vida seleccionado, se identifican claramente dichos pasos. La descripción del sistema es esencial para especificar y confeccionar los distintos incrementos hasta llegar al producto global y final. Las actividades concurrentes (especificación, desarrollo y validación) sintetizan el desarrollo pormenorizado de los incrementos, que se hará posteriormente.


Diagrama genérico del desarrollo evolutivo incremental.


El diagrama de la Figura 4 muestra en forma muy esquemática, el funcionamiento de un ciclo iterativo incremental, el cual permite la entrega de versiones parciales a medida que se va construyendo el producto final.6 Es decir, a medida que cada incremento definido llega a su etapa de operación y mantenimiento. Cada versión emitida incorpora a los anteriores incrementos las funcionalidades y requisitos que fueron analizados como necesarios.
El incremental es un modelo de tipo evolutivo que está basado en varios ciclos Cascada Realimentados aplicados repetidamente, con una filosofía iterativa.10 En la Figura 5 se muestra un refino del diagrama previo, bajo un esquema temporal, para obtener finalmente el esquema del modelo de ciclo de vida Iterativo Incremental, con sus actividades genéricas asociadas. Aquí se observa claramente cada ciclo cascada que es aplicado para la obtención de un incremento; estos últimos se van integrando para obtener el producto final completo. Cada incremento es un ciclo Cascada Realimentado, aunque, por simplicidad, en la Figura 5 se muestra como secuencial puro.

Modelo iterativo incremental para el ciclo de vida del software,.

Se observa que existen actividades de desarrollo (para cada incremento) que son realizadas en paralelo o concurrentemente, así por ejemplo, en la Figura, mientras se realiza el diseño detalle del primer incremento ya se está realizando en análisis del segundo. La Figura 5 es sólo esquemática, un incremento no necesariamente se iniciará durante la fase de diseño del anterior, puede ser posterior (incluso antes), en cualquier tiempo de la etapa previa. Cada incremento concluye con la actividad de «operación y mantenimiento» (indicada como «Operación» en la figura), que es donde se produce la entrega del producto parcial al cliente. El momento de inicio de cada incremento es dependiente de varios factores: tipo de sistema; independencia o dependencia entre incrementos (dos de ellos totalmente independientes pueden ser fácilmente iniciados al mismo tiempo si se dispone de personal suficiente); capacidad y cantidad de profesionales involucrados en el desarrollo; etc.
Bajo este modelo se entrega software «por partes funcionales más pequeñas», pero reutilizables, llamadas incrementos. En general cada incremento se construye sobre aquel que ya fue entregado.6
Como se muestra en la Figura 5, se aplican secuencias Cascada en forma escalonada, mientras progresa el tiempo calendario. Cada secuencia lineal o Cascada produce un incremento y a menudo el primer incremento es un sistema básico, con muchas funciones suplementarias (conocidas o no) sin entregar.
El cliente utiliza inicialmente ese sistema básico, intertanto, el resultado de su uso y evaluación puede aportar al plan para el desarrollo del/los siguientes incrementos (o versiones). Además también aportan a ese plan otros factores, como lo es la priorización (mayor o menor urgencia en la necesidad de cada incremento en particular) y la dependencia entre incrementos (o independencia).
Luego de cada integración se entrega un producto con mayor funcionalidad que el previo. El proceso se repite hasta alcanzar el software final completo.
Siendo iterativo, con el modelo incremental se entrega un producto parcial pero completamente operacional en cada incremento, y no una parte que sea usada para reajustar los requerimientos (como si ocurre en el modelo de construcción de prototipos).10
El enfoque incremental resulta muy útil cuando se dispone de baja dotación de personal para el desarrollo; también si no hay disponible fecha límite del proyecto por lo que se entregan versiones incompletas pero que proporcionan al usuario funcionalidad básica (y cada vez mayor). También es un modelo útil a los fines de versiones de evaluación.
Nota: Puede ser considerado y útil, en cualquier momento o incremento incorporar temporalmente el paradigma MCP como complemento, teniendo así una mixtura de modelos que mejoran el esquema y desarrollo general.
Ejemplo:
Un procesador de texto que sea desarrollado bajo el paradigma Incremental podría aportar, en principio, funciones básicas de edición de archivos y producción de documentos (algo como un editor simple). En un segundo incremento se le podría agregar edición más sofisticada, y de generación y mezcla de documentos. En un tercer incremento podría considerarse el agregado de funciones de corrección ortográfica, esquemas de paginado y plantillas; en un cuarto capacidades de dibujo propias y ecuaciones matemáticas. Así sucesivamente hasta llegar al procesador final requerido. Así, el producto va creciendo, acercándose a su meta final, pero desde la entrega del primer incremento ya es útil y funcional para el cliente, el cual observa una respuesta rápida en cuanto a entrega temprana; sin notar que la fecha límite del proyecto puede no estar acotada ni tan definida, lo que da margen de operación y alivia presiones al equipo de desarrollo.
Como se dijo, el Iterativo Incremental es un modelo del tipo evolutivo, es decir donde se permiten y esperan probables cambios en los requisitos en tiempo de desarrollo; se admite cierto margen para que el software pueda evolucionar9 . Aplicable cuando los requisitos son medianamente bien conocidos pero no son completamente estáticos y definidos, cuestión esa que si es indispensable para poder utilizar un modelo Cascada.
El modelo es aconsejable para el desarrollo de software en el cual se observe, en su etapa inicial de análisis, que posee áreas bastante bien definidas a cubrir, con suficiente independencia como para ser desarrolladas en etapas sucesivas. Tales áreas a cubrir suelen tener distintos grados de apremio por lo cual las mismas se deben priorizar en un análisis previo, es decir, definir cual será la primera, la segunda, y así sucesivamente; esto se conoce como «definición de los incrementos» con base en la priorización. Pueden no existir prioridades funcionales por parte del cliente, pero el desarrollador debe fijarlas de todos modos y con algún criterio, ya que basándose en ellas se desarrollarán y entregarán los distintos incrementos.
El hecho de que existan incrementos funcionales del software lleva inmediatamente a pensar en un esquema de desarrollo modular, por tanto este modelo facilita tal paradigma de diseño.
En resumen, un modelo incremental lleva a pensar en un desarrollo modular, con entregas parciales del producto software denominados «incrementos» del sistema, que son escogidos según prioridades predefinidas de algún modo. El modelo permite una implementación con refinamientos sucesivos (ampliación o mejora). Con cada incremento se agrega nueva funcionalidad o se cubren nuevos requisitos o bien se mejora la versión previamente implementada del producto software.
Este modelo brinda cierta flexibilidad para que durante el desarrollo se incluyan cambios en los requisitos por parte del usuario, un cambio de requisitos propuesto y aprobado puede analizarse e implementarse como un nuevo incremento o, eventualmente, podrá constituir una mejora/adecuación de uno ya planeado. Aunque si se produce un cambio de requisitos por parte del cliente que afecte incrementos previos ya terminados (detección/incorporación tardía) se debe evaluar la factibilidad y realizar un acuerdo con el cliente, ya que puede impactar fuertemente en los costos.
La selección de este modelo permite realizar entregas funcionales tempranas al cliente (lo cual es beneficioso tanto para él como para el grupo de desarrollo). Se priorizan las entregas de aquellos módulos o incrementos en que surja la necesidad operativa de hacerlo, por ejemplo para cargas previas de información, indispensable para los incrementos siguientes.10
El modelo iterativo incremental no obliga a especificar con precisión y detalle absolutamente todo lo que el sistema debe hacer, (y cómo), antes de ser construido (como el caso del cascada, con requisitos congelados). Sólo se hace en el incremento en desarrollo. Esto torna más manejable el proceso y reduce el impacto en los costos. Esto es así, porque en caso de alterar o rehacer los requisitos, solo afecta una parte del sistema. Aunque, lógicamente, esta situación se agrava si se presenta en estado avanzado, es decir en los últimos incrementos. En definitiva, el modelo facilita la incorporación de nuevos requisitos durante el desarrollo.
Con un paradigma incremental se reduce el tiempo de desarrollo inicial, ya que se implementa funcionalidad parcial. También provee un impacto ventajoso frente al cliente, que es la entrega temprana de partes operativas del software.
El modelo proporciona todas las ventajas del modelo en cascada realimentado, reduciendo sus desventajas sólo al ámbito de cada incremento.
El modelo incremental no es recomendable para casos de sistemas de tiempo real, de alto nivel de seguridad, de procesamiento distribuido, o de alto índice de riesgos.
Modelo espiral
El modelo espiral fue propuesto inicialmente por Barry Boehm. Es un modelo evolutivo que conjuga la naturaleza iterativa del modelo MCP con los aspectos controlados y sistemáticos del Modelo Cascada. Proporciona potencial para desarrollo rápido de versiones incrementales. En el modelo Espiral el software se construye en una serie de versiones incrementales. En las primeras iteraciones la versión incremental podría ser un modelo en papel o bien un prototipo. En las últimas iteraciones se producen versiones cada vez más completas del sistema diseñado.6 10
El modelo se divide en un número de Actividades de marco de trabajo, llamadas «regiones de tareas». En general existen entre tres y seis regiones de tareas (hay variantes del modelo). En la Figura 6 se muestra el esquema de un Modelo Espiral con 6 regiones. En este caso se explica una variante del modelo original de Boehm, expuesto en su tratado de 1988; en 1998 expuso un tratado más reciente.


 Modelo espiral para el ciclo de vida del software.


Las regiones definidas en el modelo de la figura son:
Región 1 - Tareas requeridas para establecer la comunicación entre el cliente y el desarrollador.
Región 2 - Tareas inherentes a la definición de los recursos, tiempo y otra información relacionada con el proyecto.
Región 3 - Tareas necesarias para evaluar los riesgos técnicos y de gestión del proyecto.
Región 4 - Tareas para construir una o más representaciones de la aplicación software.
Región 5 - Tareas para construir la aplicación, instalarla, probarla y proporcionar soporte al usuario o cliente (Ej. documentación y práctica).
Región 6 - Tareas para obtener la reacción del cliente, según la evaluación de lo creado e instalado en los ciclos anteriores.
Las actividades enunciadas para el marco de trabajo son generales y se aplican a cualquier proyecto, grande, mediano o pequeño, complejo o no. Las regiones que definen esas actividades comprenden un «conjunto de tareas» del trabajo: ese conjunto sí se debe adaptar a las características del proyecto en particular a emprender. Nótese que lo listado en los ítems de 1 a 6 son conjuntos de tareas, algunas de las ellas normalmente dependen del proyecto o desarrollo en si.
Proyectos pequeños requieren baja cantidad de tareas y también de formalidad. En proyectos mayores o críticos cada región de tareas contiene labores de más alto nivel de formalidad. En cualquier caso se aplican actividades de protección (por ejemplo, gestión de configuración del software, garantía de calidad, etc.).
Al inicio del ciclo, o proceso evolutivo, el equipo de ingeniería gira alrededor del espiral (metafóricamente hablando) comenzando por el centro (marcado con en la Figura 6) y en el sentido indicado; el primer circuito de la espiral puede producir el desarrollo de una especificación del producto; los pasos siguientes podrían generar un prototipo y progresivamente versiones más sofisticadas del software.
Cada paso por la región de planificación provoca ajustes en el plan del proyecto; el coste y planificación se realimentan en función de la evaluación del cliente. El gestor de proyectos debe ajustar el número de iteraciones requeridas para completar el desarrollo.
El modelo espiral puede ir adaptándose y aplicarse a lo largo de todo el Ciclo de vida del software (en el modelo clásico, o cascada, el proceso termina a la entrega del software).
Una visión alternativa del modelo puede observarse examinando el «eje de punto de entrada de proyectos». Cada uno de los circulitos () fijados a lo largo del eje representan puntos de arranque de los distintos proyectos (relacionados); a saber:
Un proyecto de «desarrollo de conceptos» comienza al inicio de la espiral, hace múltiples iteraciones hasta que se completa, es la zona marcada con verde.
Si lo anterior se va a desarrollar como producto real, se inicia otro proyecto: «Desarrollo de nuevo Producto». Que evolucionará con iteraciones hasta culminar; es la zona marcada en color azul.
Eventual y análogamente se generarán proyectos de «mejoras de productos» y de «mantenimiento de productos», con las iteraciones necesarias en cada área (zonas roja y gris, respectivamente).
Cuando la espiral se caracteriza de esta forma, está operativa hasta que el software se retira, eventualmente puede estar inactiva (el proceso), pero cuando se produce un cambio el proceso arranca nuevamente en el punto de entrada apropiado (por ejemplo, en «mejora del producto»).
El modelo espiral da un enfoque realista, que evoluciona igual que el software11 ; se adapta muy bien para desarrollos a gran escala.
El Espiral utiliza el MCP para reducir riesgos y permite aplicarlo en cualquier etapa de la evolución. Mantiene el enfoque clásico (cascada) pero incorpora un marco de trabajo iterativo que refleja mejor la realidad.
Este modelo requiere considerar riesgos técnicos en todas las etapas del proyecto; aplicado adecuadamente debe reducirlos antes de que sean un verdadero problema.
El Modelo evolutivo como el Espiral es particularmente apto para el desarrollo de Sistemas Operativos (complejos); también en sistemas de altos riesgos o críticos (Ej. navegadores y controladores aeronáuticos) y en todos aquellos en que sea necesaria una fuerte gestión del proyecto y sus riesgos, técnicos o de gestión.
Desventajas importantes:
Requiere mucha experiencia y habilidad para la evaluación de los riesgos, lo cual es requisito para el éxito del proyecto.
Es difícil convencer a los grandes clientes que se podrá controlar este enfoque evolutivo.
Este modelo no se ha usado tanto, como el Cascada (Incremental) o MCP, por lo que no se tiene bien medida su eficacia, es un paradigma relativamente nuevo y difícil de implementar y controlar.
Modelo espiral Win & Win
Una variante interesante del Modelo Espiral previamente visto (Figura 6) es el «Modelo espiral Win-Win»7 (Barry Boehm). El Modelo Espiral previo (clásico) sugiere la comunicación con el cliente para fijar los requisitos, en que simplemente se pregunta al cliente qué necesita y él proporciona la información para continuar; pero esto es en un contexto ideal que rara vez ocurre. Normalmente cliente y desarrollador entran en una negociación, se negocia coste frente a funcionalidad, rendimiento, calidad, etc.
«Es así que la obtención de requisitos requiere una negociación, que tiene éxito cuando ambas partes ganan».
Las mejores negociaciones se fuerzan en obtener «Victoria & Victoria» (Win & Win), es decir que el cliente gane obteniendo el producto que lo satisfaga, y el desarrollador también gane consiguiendo presupuesto y fecha de entrega realista. Evidentemente, este modelo requiere fuertes habilidades de negociación.
El modelo Win-Win define un conjunto de actividades de negociación al principio de cada paso alrededor de la espiral; se definen las siguientes actividades:
Identificación del sistema o subsistemas clave de los directivos(*) (saber qué quieren).
Determinación de «condiciones de victoria» de los directivos (saber qué necesitan y los satisface)
Negociación de las condiciones «victoria» de los directivos para obtener condiciones «Victoria & Victoria» (negociar para que ambos ganen).
(*) Directivo: Cliente escogido con interés directo en el producto, que puede ser premiado por la organización si tiene éxito o criticado si no.
El modelo Win & Win hace énfasis en la negociación inicial, también introduce 3 hitos en el proceso llamados «puntos de fijación», que ayudan a establecer la completitud de un ciclo de la espiral, y proporcionan hitos de decisión antes de continuar el proyecto de desarrollo del software.
Etapas en el desarrollo del software
Captura, análisis y especificación de requisitos
Al inicio de un desarrollo (no de un proyecto), esta es la primera fase que se realiza, y, según el modelo de proceso adoptado, puede casi terminar para pasar a la próxima etapa (caso de Modelo Cascada Realimentado) o puede hacerse parcialmente para luego retomarla (caso Modelo Iterativo Incremental u otros de carácter evolutivo).
En simple palabras y básicamente, durante esta fase, se adquieren, reúnen y especifican las características funcionales y no funcionales que deberá cumplir el futuro programa o sistema a desarrollar.
Las bondades de las características, tanto del sistema o programa a desarrollar, como de su entorno, parámetros no funcionales y arquitectura dependen enormemente de lo bien lograda que esté esta etapa. Esta es, probablemente, la de mayor importancia y una de las fases más difíciles de lograr certeramente, pues no es automatizable, no es muy técnica y depende en gran medida de la habilidad y experiencia del analista que la realice.
Involucra fuertemente al usuario o cliente del sistema, por tanto tiene matices muy subjetivos y es difícil de modelar con certeza o aplicar una técnica que sea «la más cercana a la adecuada» (de hecho no existe «la estrictamente adecuada»). Si bien se han ideado varias metodologías, incluso software de apoyo, para captura, elicitación y registro de requisitos, no existe una forma infalible o absolutamente confiable, y deben aplicarse conjuntamente buenos criterios y mucho sentido común por parte del o los analistas encargados de la tarea; es fundamental también lograr una fluida y adecuada comunicación y comprensión con el usuario final o cliente del sistema.

El artefacto más importante resultado de la culminación de esta etapa es lo que se conoce como especificación de requisitos software o simplemente documento ERS.

Como se dijo, la habilidad del analista para interactuar con el cliente es fundamental; lo común es que el cliente tenga un objetivo general o problema que resolver, no conoce en absoluto el área (informática), ni su jerga, ni siquiera sabe con precisión qué debería hacer el producto software (qué y cuantas funciones) ni, mucho menos, cómo debe operar. En otros casos menos frecuentes, el cliente «piensa» que sabe precisamente lo que el software tiene que hacer, y generalmente acierta muy parcialmente, pero su empecinamiento entorpece la tarea de elicitación. El analista debe tener la capacidad para lidiar con este tipo de problemas, que incluyen relaciones humanas; tiene que saber ponerse al nivel del usuario para permitir una adecuada comunicación y comprensión.

Escasas son las situaciones en que el cliente sabe con certeza e incluso con completitud lo que requiere de su futuro sistema, este es el caso más sencillo para el analista.

Las tareas relativas a captura, elicitación, modelado y registro de requerimientos, además de ser sumamente importante, puede llegar a ser dificultosa de lograr acertadamente y llevar bastante tiempo relativo al proceso total del desarrollo; al proceso y metodologías para llevar a cabo este conjunto de actividades normalmente se las asume parte propia de la Ingeniería de Software, pero dada la antedicha complejidad, actualmente se habla de una Ingeniería de requisitos12 , aunque ella aún no existe formalmente.
Hay grupos de estudio e investigación, en todo el mundo, que están exclusivamente abocados a idear modelos, técnicas y procesos para intentar lograr la correcta captura, análisis y registro de requerimientos. Estos grupos son los que normalmente hablan de la Ingeniería de requisitos; es decir se plantea ésta como un área o disciplina pero no como una carrera universitaria en si misma.

Algunos requisitos no necesitan la presencia del cliente, para ser capturados o analizados; en ciertos casos los puede proponer el mismo analista o, incluso, adoptar unilateralmente decisiones que considera adecuadas (tanto en requerimientos funcionales como no funcionales). Por citar ejemplos probables: Algunos requisitos sobre la arquitectura del sistema, requisitos no funcionales tales como los relativos al rendimiento, nivel de soporte a errores operativos, plataformas de desarrollo, relaciones internas o ligas entre la información (entre registros o tablas de datos) a almacenar en caso de bases o bancos de datos, etc. Algunos funcionales tales como opciones secundarias o de soporte necesarias para una mejor o más sencilla operatividad; etc.

La obtención de especificaciones a partir del cliente (u otros actores intervinientes) es un proceso humano muy interactivo e iterativo; normalmente a medida que se captura la información, se la analiza y realimenta con el cliente, refinándola, puliéndola y corrigiendo si es necesario; cualquiera sea el método de ERS utilizado. EL analista siempre debe llegar a conocer la temática y el problema que resolver, dominarlo, hasta cierto punto, hasta el ámbito que el futuro sistema a desarrollar lo abarque. Por ello el analista debe tener alta capacidad para comprender problemas de muy diversas áreas o disciplinas de trabajo (que no son específicamente suyas); así por ejemplo, si el sistema a desarrollar será para gestionar información de una aseguradora y sus sucursales remotas, el analista se debe compenetrar en cómo ella trabaja y maneja su información, desde niveles muy bajos e incluso llegando hasta los gerenciales. Dada a gran diversidad de campos a cubrir, los analistas suelen ser asistidos por especialistas, es decir gente que conoce profundamente el área para la cual se desarrollará el software; evidentemente una única persona (el analista) no puede abarcar tan vasta cantidad de áreas del conocimiento. En empresas grandes de desarrollo de productos software, es común tener analistas especializados en ciertas áreas de trabajo.

Contrariamente, no es problema del cliente, es decir él no tiene por qué saber nada de software, ni de diseños, ni otras cosas relacionadas; sólo se debe limitar a aportar objetivos, datos e información (de mano propia o de sus registros, equipos, empleados, etc) al analista, y guiado por él, para que, en primera instancia, defina el «Universo de Discurso», y con posterior trabajo logre confeccionar el adecuado documento ERS.

Es bien conocida la presión que sufren los desarrolladores de sistemas informáticos para comprender y rescatar las necesidades de los clientes/usuarios. Cuanto más complejo es el contexto del problema más difícil es lograrlo, a veces se fuerza a los desarrolladores a tener que convertirse en casi expertos de los dominios que analizan.
Cuando esto no sucede es muy probable que se genere un conjunto de requisitos13 erróneos o incompletos y por lo tanto un producto de software con alto grado de desaprobación por parte de los clientes/usuarios y un altísimo costo de reingeniería y mantenimiento. Todo aquello que no se detecte, o resulte mal entendido en la etapa inicial provocará un fuerte impacto negativo en los requisitos, propagando esta corriente degradante a lo largo de todo el proceso de desarrollo e incrementando su perjuicio cuanto más tardía sea su detección (Bell y Thayer 1976)(Davis 1993).

Procesos, modelado y formas de elicitación de requisitos
Siendo que la captura, elicitación y especificación de requisitos, es una parte crucial en el proceso de desarrollo de software, ya que de esta etapa depende el logro de los objetivos finales previstos, se han ideado modelos y diversas metodologías de trabajo para estos fines. También existen herramientas software que apoyan las tareas relativas realizadas por el ingeniero en requisitos.
El estándar IEEE 830-1998 brinda una normalización de las «Prácticas Recomendadas para la Especificación de Requisitos Software»

A medida que se obtienen los requisitos, normalmente se los va analizando, el resultado de este análisis, con o sin el cliente, se plasma en un documento, conocido como ERS o Especificación de Requisitos Software, cuya estructura puede venir definida por varios estándares, tales como CMMI.
Un primer paso para realizar el relevamiento de información es el conocimiento y definición acertada lo que se conoce como «Universo de Discurso» del problema, que se define y entiende por:
Universo de Discurso (UdeD): es el contexto general en el cual el software deberá ser desarrollado y deberá operar. El UdeD incluye todas las fuentes de información y todas las personas relacionadas con el software. Esas personas son conocidas también como actores de ese universo. El UdeD es la realidad circunstanciada por el conjunto de objetivos definidos por quienes demandaron el software.
A partir de la extracción y análisis de información en su ámbito se obtienen todas las especificaciones necesarias y tipos de requisitos para el futuro producto software.

El objetivo de la Ingeniería de requisitos (IR) es sistematizar el proceso de definición de requisitos permitiendo elicitar, modelar y analizar el problema, generando un compromiso entre los ingenieros de requisitos y los clientes/usuarios, ya que ambos participan en la generación y definición de los requisitos del sistema. La IR aporta un conjunto de métodos, técnicas y herramientas que asisten a los ingenieros de requisitos (analistas) para obtener requerimientos lo más seguros, veraces, completos y oportunos posibles, permitiendo básicamente:
Comprender el problema
Facilitar la obtención de las necesidades del cliente/usuario
Validar con el cliente/usuario
Garantizar las especificaciones de requisitos

Si bien existen diversas formas, modelos y metodologías para elicitar, definir y documentar requerimientos, no se puede decir que alguna de ellas sea mejor o peor que la otra, suelen tener muchísimo en común, y todas cumplen el mismo objetivo. Sin embargo, lo que si se puede decir sin dudas es que es indispensable utilizar alguna de ellas para documentar las especificaciones del futuro producto software. Así por ejemplo, hay un grupo de investigación argentino que desde hace varios años ha propuesto y estudia el uso del LEL (Léxico Extendido del Lenguaje) y Escenarios como metodología, aquí15 se presenta una de las tantas referencias y bibliografía sobre ello. Otra forma, más ortodoxa, de capturar y documentar requisitos se puede obtener en detalle, por ejemplo, en el trabajo de la Universidad de Sevilla sobre «Metodología para el Análisis de Requisitos de Sistemas Software».16

En la Figura 7 se muestra un esquema, más o menos riguroso, aunque no detallado, de los pasos y tareas a seguir para realizar la captura, análisis y especificación de requerimientos software. También allí se observa qué artefacto o documento se obtiene en cada etapa del proceso. En el diagrama no se explicita metodología o modelo a utilizar, sencillamente se pautan las tareas que deben cumplirse, de alguna manera.

http://www.monografias.com/trabajos40/administracion-bases-datos/administracion-bases-datos.shtml

Diagrama de tareas para captura y análisis de requisitos.

Una posible lista, general y ordenada, de tareas recomendadas para obtener la definición de lo que se debe realizar, los productos a obtener y las técnicas a emplear durante la actividad de elicitación de requisitos, en fase de Especificación de Requisitos Software es:
Obtener información sobre el dominio del problema y el sistema actual (UdeD).
Preparar y realizar las reuniones para elicitación/negociación.
Identificar/revisar los objetivos del usuario.
Identificar/revisar los objetivos del sistema.
Identificar/revisar los requisitos de información.
Identificar/revisar los requisitos funcionales.
Identificar/revisar los requisitos no funcionales.
Priorizar objetivos y requisitos.
Algunos principios básicos a tener en cuenta:
Presentar y entender cabalmente el dominio de la información del problema.
Definir correctamente las funciones que debe realizar el Software.
Representar el comportamiento del software a consecuencias de acontecimientos externos, particulares, incluso inesperados.
Reconocer requisitos incompletos, ambiguos o contradictorios.

Dividir claramente los modelos que representan la información, las funciones y comportamiento y características no funcionales.
Clasificación e identificación de requerimientos
Se pueden identificar dos formas de requisitos:
Requisitos de usuario: Los requisitos de usuario son frases en lenguaje natural junto a diagramas con los servicios que el sistema debe proporcionar, así como las restricciones bajo las que debe operar.
Requisitos de sistema: Los requisitos de sistema determinan los servicios del sistema y pero con las restricciones en detalle. Sirven como contrato.
Es decir, ambos son lo mismo, pero con distinto nivel de detalle.
Ejemplo de requisito de usuario: El sistema debe hacer préstamos Ejemplo de requisito de sistema: Función préstamo: entrada código socio, código ejemplar; salida: fecha devolución; etc.
Se clasifican en tres los tipos de requisitos de sistema:
Requisitos funcionales
Los requisitos funcionales describen:
Los servicios que proporciona el sistema (funciones).
La respuesta del sistema ante determinadas entradas.
El comportamiento del sistema en situaciones particulares.
Requisitos no funcionales
Los requisitos no funcionales son restricciones de los servicios o funciones que ofrece el sistema (ej. cotas de tiempo, proceso de desarrollo, rendimiento, etc.)
Ejemplo 1. La biblioteca Central debe ser capaz de atender simultáneamente a todas las bibliotecas de la Universidad
Ejemplo 2. El tiempo de respuesta a una consulta remota no debe ser superior a 1/2 s
A su vez, hay tres tipos de requisitos no funcionales:
Requisitos del producto. Especifican el comportamiento del producto (Ej. prestaciones, memoria, tasa de fallos, etc.)
Requisitos organizativos. Se derivan de las políticas y procedimientos de las organizaciones de los clientes y desarrolladores (Ej. estándares de proceso, lenguajes de programación, etc.)
Requisitos externos. Se derivan de factores externos al sistema y al proceso de desarrollo (Ej. requisitos legislativos, éticos, etc.)
Requisitos del dominio.
Los requisitos del dominio se derivan del dominio de la aplicación y reflejan características de dicho dominio.
Pueden ser funcionales o no funcionales.
Ej. El sistema de biblioteca de la Universidad debe ser capaz de exportar datos mediante el Lenguaje de Intercomunicación de Bibliotecas de España (LIBE). Ej. El sistema de biblioteca no podrá acceder a bibliotecas con material censurado.

http://www.monografias.com/trabajos40/administracion-bases-datos/administracion-bases-datos.shtml

Diseño del sistema

En ingeniería de software, el diseño es una fase de ciclo de vida del software. Se basa en la especificación de requisitos producido por el análisis de los requerimientos (fase de análisis), el diseño define cómo estos requisitos se cumplirán, la estructura que debe darse al sistema de software para que se haga realidad.
El diseño sigue siendo una fase separada del la programación o codificación, esta ultima corresponde a la traducción en un determinado lenguaje de programación de las premisas adoptadas en el diseño.
Las distinciones entre las actividades mencionadas hasta ahora no siempre son claras cómo se quisiera en las teorías clásicas de ingeniería de software. El diseño, en particular, puede describir el funcionamiento interno de un sistema en diferentes niveles de detalle, cada una de ellos se coloca en una posición intermedia entre el análisis y codificación.
Normalmente se entiende por "diseño de la arquitectura" al diseño de "muy alto nivel", que sólo define la estructura del sistema en términos de la módulos de software de que se compone y las relaciones macroscópicas entre ellos. A este nivel de diseño pertenecen fórmulas como cliente-servidor o “tres niveles”, o, más generalmente, las decisiones sobre el uso de la arquitectura de hardware especial que se utilice, el sistema operativo, DBMS, Protocolos de red, etc.
Un nivel intermedio de detalle puede definir la descomposición del sistema en módulos, pero esta vez con una referencia más o menos explícita al modo de descomposición que ofrece el particular lenguaje de programación con el que el desarrollo se va a implementar, por ejemplo, en un diseño realizado con la tecnología de objetos, el proyecto podría describir al sistema en términos de clases y sus interrelaciones.
El diseño detallado, por último, es una descripción del sistema muy cercana a la codificación (por ejemplo, describir no sólo las clases en abstracto, sino también sus atributos y los métodos con sus tipos).
Debido a la naturaleza "intangible" del software, y dependiendo de las herramientas que se utilizan en el proceso, la frontera entre el diseño y la codificación también puede ser virtualmente imposible de identificar. Por ejemplo, algunas herramientas CASE son capaces de generar código a partir de diagramas UML, los que describen gráficamente la estructura de un sistema software.
Codificación del software
Durante esta etapa se realizan las tareas que comúnmente se conocen como programación; que consiste, esencialmente, en llevar a código fuente, en el lenguaje de programación elegido, todo lo diseñado en la fase anterior. Esta tarea la realiza el programador, siguiendo por completo los lineamientos impuestos en el diseño y en consideración siempre a los requisitos funcionales y no funcionales (ERS) especificados en la primera etapa.
Es común pensar que la etapa de programación o codificación (algunos la llaman implementación) es la que insume la mayor parte del trabajo de desarrollo del software; sin embargo, esto puede ser relativo (y generalmente aplicable a sistemas de pequeño porte) ya que las etapas previas son cruciales, críticas y pueden llevar bastante más tiempo. Se suele hacer estimaciones de un 30% del tiempo total insumido en la programación, pero esta cifra no es consistente ya que depende en gran medida de las características del sistema, su criticidad y el lenguaje de programación elegido.7 En tanto menor es el nivel del lenguaje mayor será el tiempo de programación requerido, así por ejemplo se tardaría más tiempo en codificar un algoritmo en lenguaje ensamblador que el mismo programado en lenguaje C.
Mientras se programa la aplicación, sistema, o software en general, se realizan también tareas de depuración, esto es la labor de ir liberando al código de los errores factibles de ser hallados en esta fase (de semántica, sintáctica y lógica). Hay una suerte de solapamiento con la fase siguiente, ya que para depurar la lógica es necesario realizar pruebas unitarias, normalmente con datos de prueba; claro es que no todos los errores serán encontrados sólo en la etapa de programación, habrán otros que se encontrarán durante las etapas subsiguientes. La aparición de algún error funcional (mala respuesta a los requerimientos) eventualmente puede llevar a retornar a la fase de diseño antes de continuar la codificación.
Durante la fase de programación, el código puede adoptar varios estados, dependiendo de la forma de trabajo y del lenguaje elegido, a saber:
Código fuente: es el escrito directamente por los programadores en editores de texto, lo cual genera el programa. Contiene el conjunto de instrucciones codificadas en algún lenguaje de alto nivel. Puede estar distribuido en paquetes, procedimientos, bibliotecas fuente, etc.
Código objeto: es el código binario o intermedio resultante de procesar con un compilador el código fuente. Consiste en una traducción completa y de una sola vez de éste último. El código objeto no es inteligible por el ser humano (normalmente es formato binario) pero tampoco es directamente ejecutable por la computadora. Se trata de una representación intermedia entre el código fuente y el código ejecutable, a los fines de un enlace final con las rutinas de biblioteca y entre procedimientos o bien para su uso con un pequeño intérprete intermedio [a modo de distintos ejemplos véase EUPHORIA, (intérprete intermedio), FORTRAN (compilador puro) MSIL (Microsoft Intermediate Language) (intérprete) y BASIC (intérprete puro, intérprete intermedio, compilador intermedio o compilador puro, depende de la versión utilizada)].
El código objeto no existe si el programador trabaja con un lenguaje a modo de intérprete puro, en este caso el mismo intérprete se encarga de traducir y ejecutar línea por línea el código fuente (de acuerdo al flujo del programa), en tiempo de ejecución. En este caso tampoco existe el o los archivos de código ejecutable. Una desventaja de esta modalidad es que la ejecución del programa o sistema es un poco más lenta que si se hiciera con un intérprete intermedio, y bastante más lenta que si existe el o los archivos de código ejecutable. Es decir no favorece el rendimiento en velocidad de ejecución. Pero una gran ventaja de la modalidad intérprete puro, es que el esta forma de trabajo facilita enormemente la tarea de depuración del código fuente (frente a la alternativa de hacerlo con un compilador puro). Frecuentemente se suele usar una forma mixta de trabajo (si el lenguaje de programación elegido lo permite), es decir inicialmente trabajar a modo de intérprete puro, y una vez depurado el código fuente (liberado de errores) se utiliza un compilador del mismo lenguaje para obtener el código ejecutable completo, con lo cual se agiliza la depuración y la velocidad de ejecución se optimiza.
Código ejecutable: Es el código binario resultado de enlazar uno o más fragmentos de código objeto con las rutinas y bibliotecas necesarias. Constituye uno o más archivos binarios con un formato tal que el sistema operativo es capaz de cargarlo en la memoria RAM (eventualmente también parte en una memoria virtual), y proceder a su ejecución directa. Por lo anterior se dice que el código ejecutable es directamente «inteligible por la computadora». El código ejecutable, también conocido como código máquina, no existe si se programa con modalidad de «intérprete puro».
Pruebas (unitarias y de integración)
Entre las diversas pruebas que se le efectúan al software se pueden distinguir principalmente:
Prueba unitarias: Consisten en probar o testear piezas de software pequeñas; a nivel de secciones, procedimientos, funciones y módulos; aquellas que tengan funcionalidades específicas. Dichas pruebas se utilizan para asegurar el correcto funcionamiento de secciones de código, mucho más reducidas que el conjunto, y que tienen funciones concretas con cierto grado de independencia.
Pruebas de integración: Se realizan una vez que las pruebas unitarias fueron concluidas exitosamente; con éstas se intenta asegurar que el sistema completo, incluso los subsistemas que componen las piezas individuales grandes del software funcionen correctamente al operar e inteoperar en conjunto.
Las pruebas normalmente se efectúan con los llamados datos de prueba, que es un conjunto seleccionado de datos típicos a los que puede verse sometido el sistema, los módulos o los bloques de código. También se escogen: Datos que llevan a condiciones límites al software a fin de probar su tolerancia y robustez; datos de utilidad para mediciones de rendimiento; datos que provocan condiciones eventuales o particulares poco comunes y a las que el software normalmente no estará sometido pero pueden ocurrir; etc. Los «datos de prueba» no necesariamente son ficticios o «creados», pero normalmente sí lo son los de poca probabilidad de ocurrencia.
Generalmente, existe un fase probatoria final y completa del software, llamada Beta Test, durante la cual el sistema instalado en condiciones normales de operación y trabajo es probado exhaustivamente a fin de encontrar errores, inestabilidades, respuestas erróneas, etc. que hayan pasado los previos controles. Estas son normalmente realizadas por personal idóneo contratado o afectado específicamente a ello. Los posibles errores encontrados se transmiten a los desarrolladores para su depuración. En el caso de software de desarrollo «a pedido», el usuario final (cliente) es el que realiza el Beta Test, teniendo para ello un período de prueba pactado con el desarrollador.
Instalación y paso a producción
La instalación del software es el proceso por el cual los programas desarrollados son transferidos apropiadamente al computador destino, inicializados, y, eventualmente, configurados; todo ello con el propósito de ser ya utilizados por el usuario final. Constituye la etapa final en el desarrollo propiamente dicho del software. Luego de ésta el producto entrará en la fase de funcionamiento y producción, para el que fuera diseñado.
La instalación, dependiendo del sistema desarrollado, puede consistir en una simple copia al disco rígido destino (casos raros actualmente); o bien, más comúnmente, con una de complejidad intermedia en la que los distintos archivos componentes del software (ejecutables, bibliotecas, datos propios, etc.) son descomprimidos y copiados a lugares específicos preestablecidos del disco; incluso se crean vínculos con otros productos, además del propio sistema operativo. Este último caso, comúnmente es un proceso bastante automático que es creado y guiado con heramientas software específicas (empaquetado y distribución, instaladores).
En productos de mayor complejidad, la segunda alternativa es la utilizada, pero es realizada o guiada por especialistas; puede incluso requerirse la instalación en varios y distintos computadores (instalación distribuida).
También, en software de mediana y alta complejidad normalmente es requerido un proceso de configuración y chequeo, por el cual se asignan adecuados parámetros de funcionamiento y se testea la operatividad funcional del producto.
En productos de venta masiva las instalaciones completas, si son relativamente simples, suelen ser realizadas por los propios usuarios finales (tales como sistemas operativos, paquetes de oficina, utilitarios, etc.) con herramientas propias de instalación guiada; incluso la configuración suele ser automática. En productos de diseño específico o «a medida» la instalación queda restringida, normalmente, a personas especialistas involucradas en el desarrollo del software en cuestión.
Una vez realizada exitosamente la instalación del software, el mismo pasa a la fase de producción (operatividad), durante la cual cumple las funciones para las que fue desarrollado, es decir, es finalmente utilizado por el (o los) usuario final, produciendo los resultados esperados.
Mantenimiento
El mantenimiento de software es el proceso de control, mejora y optimización del software ya desarrollado e instalado, que también incluye depuración de errores y defectos que puedan haberse filtrado de la fase de pruebas de control y beta test. Esta fase es la última (antes de iterar, según el modelo empleado) que se aplica al ciclo de vida del desarrollo de software. La fase de mantenimiento es la que viene después de que el software está operativo y en producción.
De un buen diseño y documentación del desarrollo dependerá cómo será la fase de mantenimiento, tanto en costo temporal como monetario. Modificaciones realizadas a un software que fue elaborado con una documentación indebida o pobre y mal diseño puede llegar a ser tanto o más costosa que desarrollar el software desde el inicio. Por ello, es de fundamental importancia respetar debidamente todas las tareas de las fases del desarrollo y mantener adecuada y completa la documentación.
El período de la fase de mantenimiento es normalmente el mayor en todo el ciclo de vida.7 Esta fase involucra también actualizaciones y evoluciones del software; no necesariamente implica que el sistema tuvo errores. Uno o más cambios en el software, por ejemplo de adaptación o evolutivos, puede llevar incluso a rever y adaptar desde parte de las primeras fases del desarrollo inicial, alterando todas las demás; dependiendo de cuán profundos sean los cambios. El modelo cascada común es particularmente costoso en mantenimiento, ya que su rigidez implica que cualquier cambio provoca regreso a fase inicial y fuertes alteraciones en las demás fases del ciclo de vida.
Durante el período de mantenimiento, es común que surjan nuevas revisiones y versiones del producto; que lo liberan más depurado, con mayor y mejor funcionalidad, mejor rendimiento, etc. Varias son las facetas que pueden ser alteradas para provocar cambios deseables, evolutivos, adaptaciones o ampliaciones y mejoras.
Básicamente se tienen los siguientes tipos de cambios:
Perfectivos: Aquellos que llevan a una mejora de la calidad interna del software en cualquier aspecto: Reestructuración del código, definición más clara del sistema y su documentación; optimización del rendimiento y eficiencia.
Evolutivos: Agregados, modificaciones, incluso eliminaciones, necesarias en el software para cubrir su expansión o cambio, según las necesidades del usuario.
Adaptivos: Modificaciones que afectan a los entornos en los que el sistema opera, tales como: Cambios de configuración del hardware (por actualización o mejora de componentes electrónicos), cambios en el software de base, en gestores de base de datos, en comunicaciones, etc.
Correctivos: Alteraciones necesarias para corregir errores de cualquier tipo en el producto software desarrollado.
Carácter evolutivo del software17

El software es el producto derivado del proceso de desarrollo, según la ingeniería de software. Este producto es intrínsecamente evolutivo durante su ciclo de vida. El software evoluciona, en general, generando versiones cada vez más completas, complejas, mejoradas, optimizadas en algún aspecto, adecuadas a nuevas plataformas (sean de hardware o sistemas operativos), etc.
Cuando un sistema deja de evolucionar, eventualmente cumplirá con su ciclo de vida, entrará en obsolescencia e inevitablemente, tarde o temprano, será reemplazado por un producto nuevo.
El software evoluciona sencillamente por que se debe adaptar a los cambios del entorno, sean funcionales (exigencias de usuarios), operativos, de plataforma o arquitectura hardware.
La dinámica de evolución del software es el estudio de los cambios del sistema. La mayor contribución en esta área fue realizada por Meir M. Lehman y Belady, comenzando en los años 70 y 80. Su trabajo continuó en la década de 1990, con Lehman y otros investigadores18 de relevancia en la realimentación en los procesos de evolución (Lehman, 1996; Lehman et al., 1998; lehman et al., 2001). A partir de esos estudios propusieron un conjunto de leyes (conocidas como leyes de Lehman)9 respecto de los cambios producidos en los sistemas. Estas leyes (en realidad son hipótesis) son invariantes y ampliamente aplicables.
Lehman y Belady analizaron el crecimiento y la evolución de varios sistemas software de gran porte; derivando finalmente, según sus medidas, las siguientes ocho leyes:
Cambio continuo: Un programa que se usa en un entorno real necesariamente debe cambiar o se volverá progresivamente menos útil en ese entorno.
Complejidad creciente: A medida que un programa en evolución cambia, su estructura tiende a ser cada vez más compleja. Se deben dedicar recuersos extras para preservar y simplificar la estrucutura.
Evolución prolongada del programa: La evolución de los programas es un proceso autorregulativo. Los atributos de los sistemas, tales como tamaño, tiempo entre entregas y la cantidad de errores documentados son aproximadamente invariantes para cada entrega del sistema.
Estabilidad organizacional: Durante el tiempo de vida de un programa, su velocidad de desarrollo es aproximadamente constante e independiente de los recursos dedicados al desarrollo del sistema.
Conservación de la familiaridad: Durante el tiempo de vida de un sistema, el cambio incremental en cada entrega es aproximadamente constante.
Crecimiento continuado: La funcionalidad ofrecida por los sistemas tiene que crecer continuamente para mantener la satisfacción de los usuarios.

http://es.wikipedia.org/wiki/Software


¿Qué es un Sistema de Base de Datos?




Es un sistema computarizado cuya finalidad general es almacenar información y permitir a los usuarios recuperar y actualizar esa información con base en peticiones. Esta información puede ser cualquier cosa que sea de importancia para el individuo o la organización; es decir, todo lo que sea necesario para auxiliarle en el proceso general de su administración.



Un sistema de bases de datos comprende cuatro componentes principales: datos, hardware, software y usuarios.



Datos

Los sistemas de bases de datos están disponibles en máquinas que van desde las computadoras personales más pequeñas hasta las mainframes más grandes. En particular, los sistemas que se encuentran en máquinas grandes (sistemas grandes) tienden a ser multiusuario, mientras que los que se ejecutan en máquinas pequeñas (sistemas pequeños) tienden a ser de un solo usuario. Un sistema de un solo usuario es aquel en el que sólo un usuario puede tener acceso a la base de datos en un momento dado; un sistema multiusuario es aquel en el cual múltiples usuarios pueden tener acceso simultáneo a la base de datos.



En general, los datos de la base de datos, al menos en los sistemas grandes, serán tanto integrados como compartidos. Integrado se refiere a una unificación de varios archivos que de otro modo serían distintos, con una redundancia entre ellos eliminada al menos parcialmente. Compartido por que las piezas individuales de datos en la base pueden ser compartidas entre diferentes usuarios y que cada uno de ellos puede tener acceso a la misma pieza de datos, probablemente con fines diferentes. Distintos usuarios pueden en efecto acceder a la misma pieza de datos al mismo tiempo, lo que se conoce como acceso concurrente. Este comportamiento, concurrente o no, es en parte consecuencia del hecho de que la base de datos está integrada. Si la base de datos no es compartida, se le conoce como personal o como específica de la aplicación.

Que la base de datos sea integrada y compartida significa que cualquier usuario ocupará normalmente sólo una pequeña parte de la base de datos total; lo que es más, las partes de los distintos usuarios se traslaparán de diversas formas. En otras palabras, una determinada base de datos será percibida de muchas formas diferentes por los distintos usuarios. De hecho, aun cuando dos usuarios tengan la misma porción de la base de datos, su visión de dicha parte podría diferir considerablemente a un nivel detallado.

http://www.monografias.com/trabajos40/administracion-bases-datos/administracion-bases-datos.shtml

Tecnologías de la información y la comunicación


Torre de telecomunicaciones de Collserola, (Barcelona).
Acrónimo que hace referencia a la expresión tecnologías de la información y la comunicación, a veces referenciado como NTIC o nuevas tecnologías de la información y de la comunicación.
Es un concepto muy asociado al de informática, entendiendo a esta última como recursos, procedimientos y técnicas usadas en el procesamiento, almacenamiento y transmisión de información, definición que, por su parte, viene sufriendo cambios de la mano de las TIC pues hoy, no basta con hablar de una computadora cuando se hace referencia al procesamiento de la información. Internet puede formar parte de ese procesamiento que, quizás, se realice de manera distribuida y remota. Y al hablar de procesamiento remoto, además de incorporar el concepto de telecomunicación, se puede estar haciendo referencia a un dispositivo muy distinto a lo que tradicionalmente se entiende por computadora pues podría llevarse a cabo, por ejemplo, con un teléfono móvil o una computadora ultra-portátil, con capacidad de operar en red mediante Comunicación inalámbrica y con cada vez más prestaciones, facilidades y rendimiento.1
«Las tecnologías de la información y la comunicación no son ninguna panacea ni fórmula mágica, pero pueden mejorar la vida de todos los habitantes del planeta. Se dispone de herramientas para llegar a los Objetivos de Desarrollo del Milenio, de instrumentos que harán avanzar la causa de la libertad y la democracia y de los medios necesarios para propagar los conocimientos y facilitar la comprensión mutua» (Kofi Annan, Secretario general de la Organización de las Naciones Unidas, discurso inaugural de la primera fase de la WSIS, Ginebra 2003)2
Historia

Se pueden considerar las tecnologías de la información y la comunicación como un concepto dinámico.3 Por ejemplo, a finales del siglo XIX el teléfono podría ser considerado una nueva tecnología según las definiciones actuales. Esta misma consideración podía aplicarse a la televisión cuando apareció y se popularizó en la década de los '50 del siglo pasado. Sin embargo, estas tecnologías hoy no se incluirían en una lista de las TIC y es muy posible que actualmente los ordenadores ya no puedan ser calificados como nuevas tecnologías. A pesar de esto, en un concepto amplio, se puede considerar que el teléfono, la televisión y el ordenador forman parte de lo que se llama TIC en tanto que tecnologías que favorecen la comunicación y el intercambio de información en el mundo actual.
Después de la invención de la escritura, los primeros pasos hacia una sociedad de la información estuvieron marcados por el telégrafo eléctrico, después el teléfono y la radiotelefonía, la televisión e Internet. La telefonía móvil y el GPS han asociado la imagen al texto y a la palabra «sin cables». Internet y la televisión son accesibles en el teléfono móvil, que es también una máquina de hacer fotos.4
La asociación de la informática y las telecomunicaciones en la última década del siglo XX se ha beneficiado de la miniaturización de los componentes, permitiendo producir aparatos «multifunciones» a precios accesibles desde el año 2000.
El uso de las TIC no para de crecer y de extenderse, sobre todo en los países ricos, con el riesgo de acentuar localmente la brecha digital5 y social y la diferencia entre generaciones. Desde la agricultura de precisión y la gestión del bosque a la monitorización global del medio ambiente planetario o de la biodiversidad, a la democracia participativa (TIC al servicio del desarrollo sostenible) pasando por el comercio, la telemedicina, la información, la gestión de múltiples bases de datos, la bolsa, la robótica y los usos militares, sin olvidar la ayuda a los discapacitados (por ejemplo, ciegos que usan sintetizadores vocales avanzados), las TIC tienden a ocupar un lugar creciente en la vida humana y el funcionamiento de las sociedades.6
Algunos temen también una pérdida de libertad individual (efecto «Gran Hermano», intrusismo creciente de la publicidad no deseada...). Los prospectivistas7 piensan que las TIC tendrían que tener un lugar creciente y podrían ser el origen de un nuevo paradigma de civilización.
TIC : Evolución de los ratios de penetración de algunos servicios en la Unión Europea8
Servicio                Verano 2006 (EU25)       Verano 2007 (EU27)       Verano 2008 (EU27)
Total acceso telefónico

A nadie sorprende estar informado minuto a minuto, comunicarse con personas del otro lado del planeta, ver el video de una canción o trabajar en equipo sin estar en un mismo sitio. Las tecnologías de la información y comunicación se han convertido, a una gran velocidad, en parte importante de nuestras vidas. Este concepto que también se llama sociedad de la información se debe principalmente a un invento que apareció en 1969: Internet. Internet se gestó como parte de la Red de la Agencia de Proyectos de Investigación Avanzada (ARPANET), creada por el Departamento de Defensa de Estados Unidos y se diseñó para comunicar los diferentes organismos del país. Sus principios básicos eran: ser una red descentralizada con múltiples caminos entre dos puntos y que los mensajes estuvieran divididos en partes que serían enviadas por caminos diferentes. La presencia de diversas universidades e institutos en el desarrollo del proyecto hizo que se fueran encontrando más posibilidades de intercambiar información. Posteriormente se crearon los correos electrónicos, los servicios de mensajería y las páginas web. Pero no es hasta mediados de la década de los noventa -en una etapa en que ya había dejado de ser un proyecto militar- cuando se da la verdadera explosión de Internet. Y a su alrededor todo lo que conocemos como Tecnologías de la información y comunicación.9
El desarrollo de Internet ha significado que la información esté ahora en muchos sitios. Antes la información estaba concentrada, la transmitía la familia, los maestros, los libros. La escuela y la universidad eran los ámbitos que concentraban el conocimiento. Hoy se han roto estas barreras y con Internet hay más acceso a la información. El principal problema es la calidad de esta información. También se ha agilizado el contacto entre personas con fines sociales y de negocios. No hace falta desplazarse para cerrar negocios en diferentes ciudades del mundo o para realizar transacciones en cualquier lugar con un sencillo clic. Muchos políticos tienen su blog o vídeos en YouTube, dejando claro que las TIC en cuarenta años -especialmente los últimos diez (2000-2010)- han modificado muchos aspectos de la vida.10
En parte, estas nuevas tecnologías son inmateriales, ya que la materia principal es la información; permiten la interconexión y la interactividad; son instantáneas; tienen elevados parámetros de imagen y sonido. Al mismo tiempo las nuevas tecnologías suponen la aparición de nuevos códigos y lenguajes, la especialización progresiva de los contenidos sobre la base de la cuota de pantalla (diferenciándose de la cultura de masas) y dando lugar a la realización de múltiples actividades en poco tiempo.11
El concepto presenta dos características típicas de las nociones nuevas:
Es frecuentemente evocado en los debates contemporáneos.
Su definición semántica queda borrosa y se acerca a la de la sociedad de la información.12
El advenimiento de Internet y principalmente de la World Wide Web como medio de comunicación de masas y el éxito de los blogs, las wikis o las tecnologías peer-to-peer confieren a las TIC una dimensión social. Gérard Ayache, en La gran confusión, habla de «hiperinformación» para subrayar el impacto antropológico de las nuevas tecnologías.13 Numerosos internautas consideran Internet como una tecnología de relación.

Las tecnologías
Las TIC conforman el conjunto de recursos necesarios para manipular la información: los ordenadores, los programas informáticos y las redes necesarias para convertirla, almacenarla, administrarla, transmitirla y encontrarla.
Se pueden clasificar las TIC según:
Las redes.
Los terminales.
Los servicios.
Las redes
A continuación se analizan las diferentes redes de acceso disponibles actuales.
Telefonía fija
El método más elemental para realizar una conexión a Internet es el uso de un módem en un acceso telefónico básico. A pesar de que no tiene las ventajas de la banda ancha, este sistema ha sido el punto de inicio para muchos internautas y es una alternativa básica para zonas de menor poder adquisitivo.
En casi todos los países de la Unión Europea, el grado de disponibilidad de línea telefónica en los hogares es muy alto, excepto en Austria, Finlandia y Portugal. En estos países la telefonía móvil está sustituyendo rápidamente a la fija.14 De todas maneras, en España, el acceso a Internet por la red telefónica básica (banda estrecha) prácticamente ha desaparecido. En el año 2003 la mitad de las conexiones a Internet era de banda estrecha. En 2009, el 97% de los accesos a Internet era ya por banda ancha y casi el 95% era superior o igual a 1 Mbps.15
Banda ancha


Mapa de la distribución de clientes de banda ancha del 2005.
La banda ancha originariamente hacía referencia a una capacidad de acceso a Internet superior al acceso analógico (56 kbps en un acceso telefónico básico o 128 kbps en un acceso básico RDSI). El concepto ha variado con el tiempo en paralelo a la evolución tecnológica. Según la Comisión Federal de Comunicaciones de los EEUU (FCC) se considera banda ancha al acceso a una velocidad igual o superior a los 200 kbps, como mínimo en un sentido. Para la Unión Internacional de Telecomunicaciones el umbral se sitúa en los 2 Mbps.16
Según los países, se encuentran diferentes tecnologías: la llamada FTTH (fibra óptica hasta el hogar), el cable (introducido en principio por distribución de TV), el satélite, la RDSI (soportada por la red telefónica tradicional) y otras en fase de desarrollo. El modelo de desarrollo de la conectividad en cada país ha sido diferente y las decisiones de los reguladores de cada país han dado lugar a diferentes estructuras de mercado.
En el gráfico se ve la evolución del acceso a Internet desde 1999 hasta 2007 y se puede apreciar cómo se incrementó en ese periodo el uso de la banda ancha.
Internet está evolucionando muy rápidamente y está aumentando enormemente la cantidad de contenidos pesados (vídeos, música...). Por este motivo, los operadores se están encontrando en muchas ocasiones que las redes tradicionales no tienen suficiente capacidad para soportar con niveles de calidad adecuada el tránsito que se comienza a generar y prevén que el problema aumente con el tiempo, debido al ritmo actual de crecimiento. Algunos operadores de países de la Organización para la Cooperación y el Desarrollo Económico (OCDE) están actualizando sus redes, llevando fibra hasta los hogares (FTTH- Fibre-to-the-home) y fibra a los edificios (FTTB- Fibre-to-the-building). En diciembre de 2007, el número de accesos a banda ancha mediante fibra suponía ya un 9% del total en los países de la OCDE, un punto porcentual más que un año antes. El ADSL seguía siendo la tecnología más empleada con un 60% de las líneas de banda ancha y el cable mantenía la segunda posición con un 29%.


Acceso a internet: Evolución y distribución en la Europa del los 15.
Este desarrollo de la tecnología de la fibra óptica no es uniforme entre los diferentes países de la OCDE. En Japón y Corea del Sur se da un 44,5% y un 39,2% de las conexiones de banda ancha, respectivamente con esta tecnología, después de crecimientos espectaculares de 14,5 puntos y 15 puntos porcentuales respectivamente en año y medio, que absorben prácticamente todo el crecimiento de este tipo de tecnología; en Europa, con un 1% de las conexiones, acaba de empezar la renovación de la tecnología actual por la fibra óptica.
Durante el año 2007, en los países de la Unión Europea el porcentaje de líneas ADSL sobre el total de accesos de banda ancha era del 80,3%. Juega a favor de las tecnologías xDSL los costes de implantación y el desarrollo del ADSL 2+, de mayor capacidad y abasto.17
Los motivos para preferir conexiones de banda ancha son el no tener la línea telefónica ocupada, la velocidad del acceso y la posibilidad de estar siempre conectado. Así como el acceso a nuevos servicios relacionados con la fotografía, la descarga de música o vídeos. De menor manera, en el hogar, el equipo de conexión a Internet (módem/router) permite crear un entorno de red.
Telefonía móvil


Mensaje MMS en un terminal móvil.
A pesar de ser una modalidad más reciente, en todo el mundo se usa más la telefonía móvil que la fija. Se debe a que las redes de telefonía móvil son más fáciles y baratas de desplegar.
El número de líneas móviles en el mundo continúa en crecimiento, a pesar de que el grado de penetración en algunos países está cerca de la saturación. De hecho, en Europa la media de penetración es del 119%.18
Las redes actuales de telefonía móvil permiten velocidades medias competitivas en relación con las de banda ancha en redes fijas: 183 kbps en las redes GSM, 1064 kbps en las 3G y 2015 kbps en las WiFi.19 Esto permite a los usuarios un acceso a Internet con alta movilidad, en vacaciones o posible para quienes no disponen de acceso fijo. De hecho, se están produciendo crecimientos muy importantes del acceso a Internet de banda ancha desde móviles y también desde dispositivos fijos pero utilizando acceso móvil. Este crecimiento será un factor clave para dar un nuevo paso en el desarrollo de la sociedad de la información. Las primeras tecnologías que permitieron el acceso a datos, aunque a velocidades moderadas, fueron el GPRS y el EDGE, ambas pertenecientes a lo que se denomina 2.5G. Sin embargo, la banda ancha en telefonía móvil empezó con el 3G, que permitía 384 kbps y que ha evolucionado hacia el 3.5G, también denominado HSPA (High Speed Packet Access), que permite hasta 14 Mbps de bajada HSDPA (High Speed Downlink Packet Access) y, teóricamente, 5,76 Mbps de subida si se utiliza a más HSUPA (High Speed Uplink Packet Access). Estas velocidades son, en ocasiones, comparables con las xDSL y en un futuro no muy lejano se prevé que empiecen a estar disponibles tecnologías más avanzadas, denominadas genéricamente Long Term Evolution o redes de cuarta generación y que permitirán velocidades de 50 Mbps.20
El ritmo de implantación de la tecnología 3G en el mundo es muy irregular: mientras en Japón los usuarios de 3G son mayoría, en otras zonas también desarrolladas, como Bélgica, su uso es residual.21 22
Estas tecnologías son capaces en teoría de dar múltiples servicios (imagen, voz, datos) a altas velocidades, aunque en la práctica la calidad del servicio es variable.
La evolución del teléfono móvil ha permitido disminuir su tamaño y peso, lo que permite comunicarse desde casi cualquier lugar. Aunque su principal función es la transmisión de voz, como en el teléfono convencional, su rápido desarrollo ha incorporado otras funciones como son cámara fotográfica, agenda, acceso a Internet, reproducción de vídeo e incluso GPS y reproductor mp3.

Redes de televisión
Unidad móvil de una TV japonesa.
Actualmente hay cuatro tecnologías para la distribución de contenidos de televisión, incluyendo las versiones analógicas y las digitales:
La televisión terrestre, que es el método tradicional de transmitir la señal de difusión de televisión, en forma de ondas de radio transmitida por el espacio abierto. Este apartado incluiría la TDT.
La televisión por satélite, consistente en retransmitir desde un satélite de comunicaciones una señal de televisión emitida desde un punto de la Tierra, de forma que ésta pueda llegar a otras partes del planeta.
La televisión por cable, en la que se transmiten señales de radiofrecuencia a través de fibras ópticas o cables coaxiales.
La televisión por Internet traduce los contenidos en un formato que puede ser transportado por redes IP, por eso también es conocida como Televisión IP.
En cuanto a la televisión de pago, el primer trimestre de 2008 mostró un estancamiento en las modalidades de cable y de satélite mientras que la IPTV creció considerablemente respecto a los datos de un año antes, alcanzando en España 636.000 usuarios a finales de 2007. Los países con un número más importante de suscriptores eran Francia (4 millones) y Corea del Sur (1,8 millones). En el año 2008 se introdujo la televisión sobre el terminal móvil, que en el primer trimestre del 2008 consiguió miles de clientes.23 Bajo esta modalidad se ofrece un amplio catálogo de canales de televisión y de vídeos y se prevén diversas opciones de comercialización, con el pago por acceso a un paquete de canales o el pago por consumo.
Las redes de televisión que ofrecen programación en abierto se encuentran en un proceso de transición hacia una tecnología digital (TDT). Esta nueva tecnología supone una mejora en la calidad de imagen, a la vez que permite nuevos servicios. En España, durante un tiempo convivieron ambos sistemas, hasta el día 3 de abril de 2010 en que las emisoras de televisión dejaron de prestar sus servicios mediante la tecnología analógica para ofrecer únicamente la forma digital. Para poder sintonizar la televisión utilizando la tecnología digital, es necesario realizar dos adaptaciones básicas: adaptación de la antena del edificio, y disponer de un sintonizador de TDT en el hogar. Destaca un cambio importante de tendencia en la forma de adquirir los sintonizadores, ya que al principio se adquirían como dispositivos independientes para conectar externamente a los televisores; mientras que actualmente estos sintonizadores se compran incorporados a la propia televisión o a otros dispositivos como el DVD. De esta manera, el número acumulado de descodificadores integrados ha ultrapasado los no integrados.
A pesar del número de hogares preparados para la recepción de la televisión digital, aún la cuota de pantalla conseguida no es demasiado significativa, a pesar del elevado crecimiento durante el año 2009. Esto es debido a que muchos hogares estaban preparados para la recepción de la señal digital pero aún continuaban sintonizando los canales en analógico. Por este motivo, un poco menos de la mitad de los hogares preparados para recibir la TDT estaban utilizando esta posibilidad.

Router con Wi-Fi.
Cada día son más los dispositivos que se encuentran en el interior de los hogares y que tienen algún tipo de conectividad. También los dispositivos de carácter personal como el teléfono, móvil, PDA..., son habituales entre los miembros de cualquier familia. La proliferación de esta cantidad de dispositivos es un claro síntoma de la aceptación de la sociedad de la información, aunque también plantea diversos tipos de problemas, como la duplicidad de información en diferentes terminales, datos que no están sincronizados, etc. Por este motivo surge la necesidad de las redes del hogar. Estas redes se pueden implementar por medio de cables y también sin hilos, forma ésta mucho más común por la mayor comodidad para el usuario y porque actualmente muchos dispositivos vienen preparados con este tipo de conectividad.24 Es muy común que los internautas dispongan de redes sin hilos Wi-Fi, y dos de cada tres ya las han incorporado en su casa. España se sitúa en segunda posición, por detrás tan sólo de Luxemburgo y muy por encima de la media europea que es un 46%. En general y en todos los países las cifras son muy superiores a las mostradas un año antes, con el crecimiento medio de 12 puntos porcentuales en la Unión Europea.25
Además de la simple conexión de dispositivos para compartir información, son muchas las posibilidades de las tecnologías TIC en los hogares. En un futuro próximo una gran cantidad de servicios de valor añadido estarán disponibles en los hogares e incluirán diferentes campos, desde los servicios relacionados con el entretenimiento como la posibilidad de jugar online y servicios multimédia, hasta los servicios e-Health o educativos que suponen un gran beneficio social, sobre todo en zonas más despobladas.Lo que potenciará aún más la necesidad de redes dentro del hogar.



Red de computadoras


Una red de computadoras, también llamada red de ordenadores, red de comunicaciones de datos o red informática, es un conjunto de equipos informáticos y software conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos, con la finalidad de compartir información, recursos y ofrecer servicios.1

Como en todo proceso de comunicación se requiere de un emisor, un mensaje, un medio y un receptor. La finalidad principal para la creación de una red de computadoras es compartir los recursos y la información en la distancia, asegurar la confiabilidad y la disponibilidad de la información, aumentar la velocidad de transmisión de los datos y reducir el costo general de estas acciones.2 Un ejemplo es Internet, la cual es una gran red de millones de computadoras ubicadas en distintos puntos del planeta interconectadas básicamente para compartir información y recursos.

La estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más importante y extendido de todos ellos el modelo TCP/IP basado en el modelo de referencia OSI. Este último, estructura cada red en siete capas con funciones concretas pero relacionadas entre sí; en TCP/IP se reducen a cuatro capas. Existen multitud de protocolos repartidos por cada capa, los cuales también están regidos por sus respectivos estándares.3

Historia


El primer indicio de redes de comunicación fue de tecnología telefónica y telegráfica. En 1940 se transmitieron datos desde la Universidad de Darmouth, en Nuevo Hampshire, a Nueva York. A finales de la década de 1960 y en los posteriores 70 fueron creadas las minicomputadoras. En 1976, Apple introduce el Apple I, uno de los primeros ordenadores personales. En 1981, IBMintroduce su primera PC. A mitad de la década de 1980 las PC comienzan a usar los módems para compartir archivos con otras computadoras, en un rango de velocidades que comenzó en 1200 bps y llegó a los 56 kbps (comunicación punto a punto o dial-up), cuando empezaron a ser sustituidos por sistema de mayor velocidad, especialmente ADSL.

Componentes básicos de las redes


Para poder formar una red se requieren elementos: hardware, software y protocolos. Los elementos físicos se clasifican en dos grandes grupos: dispositivos de usuario final (hosts) y dispositivos de red. Los dispositivos de usuario final incluyen los computadores, impresoras, escáneres, y demás elementos que brindan servicios directamente al usuario y los segundos son todos aquellos que conectan entre sí a los dispositivos de usuario final, posibilitando su intercomunicación.
El fin de una red es la de interconectar los componentes hardware de una red , y por tanto, principalmente, las computadoras individuales, también denominados hosts, a los equipos que ponen los servicios en la red, los servidores, utilizando el cableado o tecnología inalámbrica soportada por la electrónica de red y unidos por cableado o radiofrecuencia. En todos los casos la tarjeta de red se puede considerar el elemento primordial, sea ésta parte de un ordenador, de un conmutador, de una impresora, etc. y sea de la tecnología que sea (ethernet, Wi-Fi, Bluetooth, etc.)

Software

Sistema operativo de red: permite la interconexión de ordenadores para poder acceder a los servicios y recursos. Al igual que un equipo no puede trabajar sin un sistema operativo, una red de equipos no puede funcionar sin un sistema operativo de red. En muchos casos el sistema operativo de red es parte del sistema operativo de los servidores y de los clientes, por ejemplo en Linuxy Microsoft Windows.
Software de aplicación: en última instancia, todos los elementos se utilizan para que el usuario de cada estación, pueda utilizar sus programas y archivos específicos. Este software puede ser tan amplio como se necesite ya que puede incluir procesadores de texto, paquetes integrados, sistemas administrativos de contabilidad y áreas afines, sistemas especializados, correos electrónico, etc. El software adecuado en el sistema operativo de red elegido y con los protocolos necesarios permiten crear servidores para aquellos servicios que se necesiten.

 

 

Hardware

Tarjeta de red

Artículo principal: Tarjeta de red.
Para lograr el enlace entre las computadoras y los medios de transmisión (cables de red o medios físicos para redes alámbricas e infrarrojos o radiofrecuencias para redes inalámbricas), es necesaria la intervención de una tarjeta de red, o NIC (Network Card Interface), con la cual se puedan enviar y recibir paquetes de datos desde y hacia otras computadoras, empleando un protocolo para su comunicación y convirtiendo a esos datos a un formato que pueda ser transmitido por el medio (bits, ceros y unos). Cabe señalar que a cada tarjeta de red le es asignado un identificador único por su fabricante, conocido como dirección MAC (Media Access Control), que consta de 48 bits (6 bytes). Dicho identificador permite direccionar el tráfico de datos de la red del emisor al receptor adecuado.
El trabajo del adaptador de red es el de convertir las señales eléctricas que viajan por el cable (ej: red Ethernet) o las ondas de radio (ej: red Wi-Fi) en una señal que pueda interpretar el ordenador.
Estos adaptadores son unas tarjetas PCI que se conectan en las ranuras de expansión del ordenador. En el caso de ordenadores portátiles, estas tarjetas vienen en formato PCMCIA o similares. En los ordenadores del siglo XXI, tanto de sobremesa como portátiles, estas tarjetas ya vienen integradas en la placa base.
Adaptador de red es el nombre genérico que reciben los dispositivos encargados de realizar dicha conversión. Esto significa que estos adaptadores pueden ser tanto Ethernet, como wireless, así como de otros tipos como fibra óptica, coaxial, etc. También las velocidades disponibles varían según el tipo de adaptador; éstas pueden ser, en Ethernet, de 10, 100, 1000 Mbps o 10000, y en los inalámbricos, principalmente, de 11, 54, 300 Mbps.

Dispositivos de usuario final

·         Computadoras personales: son los puestos de trabajo habituales de las redes. Dentro de la categoría de computadoras, y más concretamente computadoras personales, se engloban todos los que se utilizan para distintas funciones, según el trabajo que realizan. Se incluyen desde las potentes estaciones de trabajo para la edición de vídeo, por ejemplo, hasta los ligerosequipos portátiles, conocidos como netbooks, cuya función principal es la de navegar por Internet. Las tabletas se popularizaron al final de la primera década del siglo XXI, especialmente por el éxito del iPad de Apple.
·         Terminal: muchas redes utilizan este tipo de equipo en lugar de puestos de trabajo para la entrada de datos. En estos sólo se exhiben datos o se introducen. Este tipo de terminales, trabajan unido a un servidor, que es quien realmente procesa los datos y envía pantallas de datos a los terminales.
·         Electrónica del hogar: las tarjetas de red empezaron a integrarse, de forma habitual, desde la primera década del siglo XXI, en muchos elementos habituales de los hogares: televisores, equipos multimedia, proyectores, videoconsolas, teléfonos celulares, libros electrónicos, etc. e incluso en electrodomésticos, como frigoríficos, convirtiéndolos en partes de las redes junto a los tradiciones ordenadores.
·         Impresoras: muchos de estos dispositivos son capaces de actuar como parte de una red de ordenadores sin ningún otro elemento, tal como un print server, actuando como intermediario entre la impresora y el dispositivo que está solicitando un trabajo de impresión de ser terminado. Los medios de conectividad de estos dispositivos pueden ser alambricos o inalámbricos, dentro de este último puede ser mediante: ethernet, Wi-Fi, infrarrojo o bluetooth. En algunos casos se integran dentro de la impresora y en otros por medio de convertidores externos.
·         Otros elementos: escáneres, lectores de CD-ROM,

Servidores

Artículo principal: Servidor.
Son los equipos que ponen a disposición de los clientes los distintos servicios. En la siguiente lista hay algunos tipos comunes de servidores y sus propósitos:
·         Servidor de archivos: almacena varios tipos de archivo y los distribuye a otros clientes en la red. Pueden ser servidos en distinto formato según el servicio que presten y el medio: FTP,SMB, etc.
·         Servidor de impresión: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red, poniendo en cola los trabajos de impresión (aunque también puede cambiar la prioridad de las diferentes impresiones), y realizando la mayoría o todas las otras funciones que en un sitio de trabajo se realizaría para lograr una tarea de impresión si la impresora fuera conectada directamente con el puerto de impresora del sitio de trabajo.
·         Servidor de correo: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con el e-mail para los clientes de la red.
·         Servidor de fax: almacena, envía, recibe, enruta y realiza otras funciones necesarias para la transmisión, la recepción y la distribución apropiadas de los fax, con origen y/o destino una computadora o un dispositivo físico de telefax.
·         Servidor de telefonía: realiza funciones relacionadas con la telefonía, como es la de contestador automático, realizando las funciones de un sistema interactivo para la respuesta de la voz, almacenando los mensajes de voz, encaminando las llamadas y controlando también la red o Internet, etc. Pueden operan con telefonía IP o analógica.
·         Servidor proxy: realiza un cierto tipo de funciones en nombre de otros clientes en la red para aumentar el funcionamiento de ciertas operaciones (p. ej., prefetching y depositar documentos u otros datos que se soliciten muy frecuentemente). También «sirve» seguridad; esto es, tiene un firewall (cortafuegos). Permite administrar el acceso a Internet en una red de computadoras permitiendo o negando el acceso a diferentes sitios web, basándose en contenidos, origen/destino, usuario, horario, etc.
·         Servidor de acceso remoto (RAS, del inglés Remote Access Service): controla las líneas de módems u otros canales de comunicación de la red para que las peticiones conecten una posición remota con la red, responden las llamadas telefónicas entrantes o reconocen la petición de la red y realizan los chequeos necesarios de seguridad y otros procedimientos necesarios para registrar a un usuario en la red. Gestionan las entradas para establecer la redes virtuales privadas, VPN.
·         Servidor web: almacena documentos HTML, imágenes, archivos de texto, escrituras, y demás material web compuesto por datos (conocidos normalmente como contenido), y distribuye este contenido a clientes que la piden en la red.
·         Servidor de streaming: servidores que distribuyen multimedia de forma continua evitando al usuario esperar a la descarga completa del fichero. De esta forma se pueden distribuir contenidos tipo radio, vídeo, etc. en tiempo real y sin demoras.
·         Servidor de reserva, o standby server: tiene el software de reserva de la red instalado y tiene cantidades grandes de almacenamiento de la red en discos duros u otras formas del almacenamiento disponibles para que se utilice con el fin de asegurarse de que la pérdida de un servidor principal no afecte a la red. El servidor de reserva lo puede ser de cualquiera de los otros tipos de servidor, siendo muy habituales en los servidores de aplicaciones y bases de datos.
·         Servidor de autenticación: es el encargado de verificar que un usuario pueda conectarse a la red en cualquier punto de acceso, ya sea inalámbrico o por cable, basándose en el estándar802.1x y puede ser un servidor de tipo RADIUS.
·         Servidores para los servicios de red: estos equipos gestionan aquellos servicios necesarios propios de la red y sin los cuales no se podrían interconectar, al menos de forma sencilla. Algunos de esos servicios son: servicio de directorio para la gestión d elos usuarios y los recursos compartidos, Dynamic Host Configuration Protocol (DHCP) para la asignación de las direcciones IP en redes TCP/IP, Domain Name System (DNS) para poder nombrar los equipos sin tener que recurrir a su dirección IP numérica, etc.
·         Servidor de base de datos: permite almacenar la información que utilizan las aplicaciones de todo tipo, guardándola ordenada y clasificada y que puede ser recuperada en cualquier momento y en base a una consulta concreta. Estos servidores suelen utilizar lenguajes estandarízados para hacer más fácil y reutilizable la programación de aplicaciones, uno de los más populares esSQL.
·         Servidor de aplicaciones: ejecuta ciertas aplicaciones. Usualmente se trata de un dispositivo de software que proporciona servicios de aplicación a las computadoras cliente. Un servidor de aplicaciones gestiona la mayor parte (o la totalidad) de las funciones de lógica de negocio y de acceso a los datos de la aplicación. Los principales beneficios de la aplicación de la tecnología de servidores de aplicación son la centralización y la disminución de la complejidad en el desarrollo de aplicaciones.
·         Servidores de monitorización y gestión: ayudan a simplificar las tareas de control, monitorización, búsqueda de averías, resolución de incidencias, etc. Permiten, por ejemplo, centralizar la recepción de mensajes de aviso, alarma e información que emiten los distintos elementos de red (no solo los propios servidores). El SNMP es un de los protocolos más difundidos y que permite comunicar elementos de distintos fabricantes y de distinta naturaleza.
·         Y otros muchos dedicados a múltiples tareas, desde muy generales a aquellos de una especifidad enorme.

Almacenamiento en red

En la redes medianas y grandes el almacenamiento de datos principal no se produce en los propios servidores sino que se utilizan dispositivos externos, conocidos como disk arrays (matrices de discos) interconectados, normalmente por redes tipo SAN, o NAS. Estos medios permiten centralizar la información, una mejor gestión del espacio, sistemas redundantes y de alta disponibilidad.
Los medios de copia de seguridad suelen incluirse en la misma red donde se alojan los medios de almacenamiento mencionados más arriba, de esta forma el traslado de datos entre ambos, tanto al hacer la copia como las posibles restauraciones, se producen dentro de esta red sin afectar al tráfico de los clientes con los servidores o entre ellos.

Dispositivos de red

Los equipos informáticos descritos necesitan de una determinada tecnología que forme la red en cuestión. Según las necesidades se deben seleccionar los elementos adecuados para poder completar el sistema. Por ejemplo, si queremos unir los equipos de una oficina entre ellos debemos conectarlos por medio de un conmutador o un concentrador, si además hay un varios portátiles con tarjetas de red Wi-Fi debemos conectar un punto de acceso inalámbrico para que recoja sus señales y pueda enviarles las que les correspondan, a su vez el punto de acceso estará conectado al conmutador por un cable. Si todos ellos deben disponer de acceso a Internet, se interconectaran por medio de un router, que podría ser ADSL, ethernet sobre fibra óptica,broadband, etc.
Los elementos de la electrónica de red más habituales son:
·         Conmutador, o switch,
·         Enrutador, o router,
·         Puente de red, o bridge,
·         Puente de red y enrutador, o brouter,
·         Punto de acceso inalámbrico, o WAP (Wireless Access Point),

Protocolos de redes

Artículo principal: Protocolo de red.
Existen diversos protocolos, estándares y modelos que determinan el funcionamiento general de las redes. Destacan el modelo OSI y el TCP/IP. Cada modelo estructura el funcionamiento de una red de manera distinta. El modelo OSI cuenta con siete capas muy definidas y con funciones diferenciadas y el TCP/IP con cuatro capas diferenciadas pero que combinan las funciones existentes en las siete capas del modelo OSI.4 Los protocolos están repartidos por las diferentes capas pero no están definidos como parte del modelo en sí sino como entidades diferentes de normativas internacionales, de modo que el modelo OSI no puede ser considerado una arquitectura de red.5

Modelo OSI

Artículo principal: Modelo OSI.
El modelo OSI (Open Systems Interconnection) fue creado por la ISO y se encarga de la conexión entre sistemas abiertos, esto es, sistemas abiertos a la comunicación con otros sistemas. Los principios en los que basó su creación eran: una mayor definición de las funciones de cada capa, evitar agrupar funciones diferentes en la misma capa y una mayor simplificación en el funcionamiento del modelo en general.4
Este modelo divide las funciones de red en siete capas diferenciadas:
#
Capa
Unidad de intercambio
7.
APDU
6.
PPDU
5.
SPDU
4.
TPDU
3.
2.
1.

Modelo TCP/IP

Artículo principal: TCP/IP.
Este modelo es el implantado actualmente a nivel mundial: fue utilizado primeramente en ARPANET y es utilizado actualmente a nivel global en Internet y redes locales. Su nombre deriva de la unión del los nombres de los dos principales protocolos que lo conforman: TCP en la capa de transporte e IP en la capa de red.6 Se compone de cuatro capas:
#
Capa
Unidad de intercambio
4.
no definido
3.
2.
no definido (Datagrama)
1.
??

Otros estándares

Existen otros estándares, más concretos, que definen el modo de funcionamiento de diversas tecnologías de transmisión de datos:
Esta lista muestra algunos ejemplos, no es completa.
Tecnología
Estándar
Año de primera publicación
Otros detalles
-
-
-
-
Reúne un conjunto de estándares.
-

Clasificación de las redes

Una red puede recibir distintos calificativos de clasificación en base a distintas taxonomías: alcance, tipo de conexión, tecnología, etc.

Por alcance

·         Red de área personal, o PAN (Personal Area Network) en inglés, es una red de ordenadores usada para la comunicación entre los dispositivos de la computadora cerca de una persona.
·         Red inalámbrica de área personal, o WPAN (Wireless Personal Area Network), es una red de computadoras inalámbrica para la comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella. El medio de transporte puede ser cualqueira de los habituales en las redes inalámbricas pero las que reciben esta denominación son habituales en Bluetooth.
·         Red de área local, o LAN (Local Area Network), es una red que se limita a un área especial relativamente pequeña tal como un cuarto, un solo edificio, una nave, o un avión. Las redes de área local a veces se llaman una sola red de localización. No utilizan medios o redes de interconexión públicos.
·         Red de área local inalámbrica, o WLAN (Wireless Local Area Network), es un sistema de comunicación de datos inalámbrico flexible, muy utilizado como alternativa a las redes de área local cableadas o como extensión de estas.
·         Red de área de campus, o CAN (Campus Area Network), es una red de computadoras de alta velocidad que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, una base militar, hospital, etc. Tampoco utiliza medios públicos para la interconexión.
·         Red de área metropolitana (metropolitan area network o MAN, en inglés) es una red de alta velocidad (banda ancha) que da cobertura en un área geográfica más extensa que un campus, pero aun así limitado. Por ejemplo, un red que interconecte los edificios públicos de un municipio dentro de la localidad por medio de fibra óptica.
·         Redes de área amplia, o WAN (Wide Area Network), son redes informáticas que se extienden sobre un área geográfica extensa utilizando medios como: satélites, cables interoceánicos, Internet, fibras ópticas públicas, etc.
·         Red de área de almacenamiento, en inglés SAN (Storage Area Network), es una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte, permitiendo el tránsito de datos sin afectar a las redes por las que acceden los usuarios.
·         Red de área local virtual, o VLAN (Virtual LAN), es un grupo de computadoras con un conjunto común de recursos a compartir y de requerimientos, que se comunican como si estuvieran adjuntos a una división lógica de redes de computadoras en la cual todos los nodos pueden alcanzar a los otros por medio de broadcast (dominio de broadcast) en la capa de enlace de datos, a pesar de su diversa localización física. Este tipo surgió como respuesta a la necesidad de poder estructurar las conexiones de equipos de un edificio por medio de software,11permitiendo dividir un conmutador en varios virtuales.

Por tipo de conexión

Medios guiados

Véase también: Cableado estructurado.
·         El cable coaxial se utiliza para transportar señales electromagnéticas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo y uno exterior denominado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes; los cuales están separados por un material dieléctrico que, en realidad, transporta la señal de información.
·         El cable de par trenzado es una forma de conexión en la que dos conductores eléctricos aislados son entrelazados para tener menores interferencias y aumentar la potencia y disminuir ladiafonía de los cables adyacentes. Dependiento de la red se pueden utilizar, uno, dos, cuatro o más pares.
·         La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir.

Medios no guiados

Véanse también: Red inalámbrica y 802.11.
·         Red por radio es aquella que emplea la radiofrecuencia como medio de unión de las diversas estaciones de la red.
·         Red por infrarrojos, permiten la comunicación entre dos nodos, usando una serie de leds infrarrojos para ello. Se trata de emisores/receptores de ondas infrarrojas entre ambos dispositivos, cada dispositivo necesita al otro para realizar la comunicación por ello es escasa su utilización a gran escala. No disponen de gran alcacen y necesitan de visibilidad entre los dispositivos.
·         Red por microondas, es un tipo de red inalámbrica que utiliza microondas como medio de transmisión. Los protocolos más frecuentes son: el IEEE 802.11b y transmite a 2,4 GHz, alcanzando velocidades de 11 Mbps (Megabits por segundo); el rango de 5,4 a 5,7 GHz para el protocolo IEEE 802.11a; el IEEE 802.11n que permite velocidades de hasta 600 Mbps; etc.

Por relación funcional

·         Cliente-servidor es la arquitectura que consiste básicamente en un cliente que realiza peticiones a otro programa (el servidor) que le da respuesta.
·         Peer-to-peer, o red entre iguales, es aquella red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí.

Por tecnología

·         Red Point-To-Point es aquella en la que existe multitud de conexiones entre parejas individuales de máquinas. Este tipo de red requiere, en algunos casos, máquinas intermedias que establezcan rutas para que puedan transmitirse paquetes de datos. El medio electrónico habitual para la interconexión es el conmutador, o switch.
·         Red broadcast se caracteriza por transmitir datos por un sólo canal de comunicación que comparten todas las máquinas de la red. En este caso, el paquete enviado es recibido por todas las máquinas de la red pero únicamente la destinataria puede procesarlo. Las equipos unidos por un concentrador, o hub, forman redes de este tipo.

Por topología física

Descripción: http://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Topolog%C3%ADa_de_red.png/200px-Topolog%C3%ADa_de_red.png
Descripción: http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Topologías físicas de red.
Véase también: Topología de red.
·         La red en bus se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos.
·         En una red en anillo cada estación está conectada a la siguiente y la última está conectada a la primera.
·         En una red en estrella las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste.
·         En una red en malla cada nodo está conectado a todos los otros.
·         En una red en árbol los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central.
·         En una red mixta se da cualquier combinación de las anteriores.[cita requerida]

Por la direccionalidad de los datos

·         Simplex o unidireccional: un equipo terminal de datos transmite y otro recibe.
·         Half-duplex, en castellano semidúplex: el método o protocolo de envío de información es bidireccional pero no simultáneobidireccional, sólo un equipo transmite a la vez.
·         Full-duplex, o dúplex,: los dos equipos involucrados en la comunicación lo pueden hacer de forma simultánea, transmitir y recibir.

Por grado de autentificación

·         'Red privada: una red privada se definiría como una red que puede usarla solo algunas personas y que están configuradas con clave de acceso personal.[cita requerida]
·         Red de acceso público: una red pública se define como una red que puede usar cualquier persona y no como las redes que están configuradas con clave de acceso personal. Es una red de computadoras interconectados, capaz de compartir información y que permite comunicar a usuarios sin importar su ubicación geográfica.[cita requerida]

Por grado de difusión

·         Una intranet es una red de ordenadores privados que utiliza tecnología Internet para compartir dentro de una organización parte de sus sistemas de información y sistemas operacionales.
·         Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial.

Por servicio o función

·         Una red comercial proporciona soporte e información para una empresa u organización con ánimo de lucro.
·         Una red educativa proporciona soporte e información para una organización educativa dentro del ámbito del aprendizaje.
·         Una red para el proceso de datos proporciona una interfaz para intercomunicar equipos que vayan a realizar una función de cómputo conjunta.
 http://es.wikipedia.org/wiki/Red_de_computadoras


INTERNET




Sus orígenes se remontan a la década de 1960, dentro de ARPA (hoy DARPA), como respuesta a la necesidad de esta organización de buscar mejores maneras de usar los computadores de ese entonces, pero enfrentados al problema de que los principales investigadores y laboratorios deseaban tener sus propios computadores, lo que no sólo era más costoso, sino que provocaba una duplicación de esfuerzos y recursos.11 Así nace ARPANet (Advanced Research Projects Agency Network o Red de la Agencia para los Proyectos de Investigación Avanzada de los Estados Unidos), que nos legó el trazado de una red inicial de comunicaciones de alta velocidad a la cual fueron integrándose otras instituciones gubernamentales y redes académicas durante los años 70.12 13 14

Investigadores, científicos, profesores y estudiantes se beneficiaron de la comunicación con otras instituciones y colegas en su rama, así como de la posibilidad de consultar la información disponible en otros centros académicos y de investigación. De igual manera, disfrutaron de la nueva habilidad para publicar y hacer disponible a otros la información generada en sus actividades.15 16

En el mes de julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Lawrence Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí. Para explorar este terreno, en 1965, Roberts conectó una computadora TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de computadoras de área amplia jamás construida.17 18 19

1969: La primera red interconectada nace el 21 de noviembre de 1969, cuando se crea el primer enlace entre las universidades de UCLA y Stanford por medio de la línea telefónica conmutada, y gracias a los trabajos y estudios anteriores de varios científicos y organizaciones desde 1959 (ver: Arpanet). El mito de que ARPANET, la primera red, se construyó simplemente para sobrevivir a ataques nucleares sigue siendo muy popular. Sin embargo, este no fue el único motivo. Si bien es cierto que ARPANET fue diseñada para sobrevivir a fallos en la red, la verdadera razón para ello era que los nodos de conmutación eran poco fiables, tal y como se atestigua en la siguiente cita:

A raíz de un estudio de RAND, se extendió el falso rumor de que ARPANET fue diseñada para resistir un ataque nuclear. Esto nunca fue cierto, solamente un estudio de RAND, no relacionado con ARPANET, consideraba la guerra nuclear en la transmisión segura de comunicaciones de voz. Sin embargo, trabajos posteriores enfatizaron la robustez y capacidad de supervivencia de grandes porciones de las redes subyacentes. (Internet Society, A Brief History of the Internet)

1972: Se realizó la Primera demostración pública de ARPANET, una nueva red de comunicaciones financiada por la DARPA que funcionaba de forma distribuida sobre la red telefónica conmutada. El éxito de ésta nueva arquitectura sirvió para que, en 1973, la DARPA iniciara un programa de investigación sobre posibles técnicas para interconectar redes (orientadas al tráfico de paquetes) de distintas clases. Para este fin, desarrollaron nuevos protocolos de comunicaciones que permitiesen este intercambio de información de forma "transparente" para las computadoras conectadas. De la filosofía del proyecto surgió el nombre de "Internet", que se aplicó al sistema de redes interconectadas mediante los protocolos TCP e IP.20
1983: El 1 de enero, ARPANET cambió el protocolo NCP por TCP/IP. Ese mismo año, se creó el IAB con el fin de estandarizar el protocolo TCP/IP y de proporcionar recursos de investigación a Internet. Por otra parte, se centró la función de asignación de identificadores en la IANA que, más tarde, delegó parte de sus funciones en el Internet registry que, a su vez, proporciona servicios a los DNS.21 22
1986: La NSF comenzó el desarrollo de NSFNET que se convirtió en la principal Red en árbol de Internet, complementada después con las redes NSINET y ESNET, todas ellas en Estados Unidos. Paralelamente, otras redes troncales en Europa, tanto públicas como comerciales, junto con las americanas formaban el esqueleto básico ("backbone") de Internet.23 24
1989: Con la integración de los protocolos OSI en la arquitectura de Internet, se inició la tendencia actual de permitir no sólo la interconexión de redes de estructuras dispares, sino también la de facilitar el uso de distintos protocolos de comunicaciones.


En 1990 el CERN crea el código HTML y con él el primer cliente World Wide Web. En la imagen el código HTML con sintaxis coloreada.
25
En el CERN de Ginebra, un grupo de físicos encabezado por Tim Berners-Lee creó el lenguaje HTML, basado en el SGML. En 1990 el mismo equipo construyó el primer cliente Web, llamado WorldWideWeb (WWW), y el primer servidor web.26
A inicios de los 90, con la introducción de nuevas facilidades de interconexión y herramientas gráficas simples para el uso de la red, se inició el auge que actualmente le conocemos al Internet. Este crecimiento masivo trajo consigo el surgimiento de un nuevo perfil de usuarios, en su mayoría de personas comunes no ligadas a los sectores académicos, científicos y gubernamentales.27
Esto ponía en cuestionamiento la subvención del gobierno estadounidense al sostenimiento y la administración de la red, así como la prohibición existente al uso comercial del Internet. Los hechos se sucedieron rápidamente y para 1993 ya se había levantado la prohibición al uso comercial del Internet y definido la transición hacia un modelo de administración no gubernamental que permitiese, a su vez, la integración de redes y proveedores de acceso privados.28
2006: El 3 de enero, Internet alcanzó los mil cien millones de usuarios. Se prevé que en diez años, la cantidad de navegantes de la Red aumentará a 2000 millones.29
El resultado de todo esto es lo que experimentamos hoy en día: la transformación de lo que fue una enorme red de comunicaciones para uso gubernamental, planificada y construida con fondos estatales, que ha evolucionado en una miríada de redes privadas interconectadas entre sí. Actualmente la red experimenta cada día la integración de nuevas redes y usuarios, extendiendo su amplitud y dominio, al tiempo que surgen nuevos mercados, tecnologías, instituciones y empresas que aprovechan este nuevo medio, cuyo potencial apenas comenzamos a descubrir.30
Tecnología de Internet

Protocolo


Grafica del Usuario comun.


Paquetes de Internet de varios provedores.
Los proveedores de servicios de Internet conectar a los clientes (pensado en el "fondo" de la jerarquía de enrutamiento) a los clientes de otros ISPs. En el "top" de la jerarquía de enrutamiento son una decena de redes de nivel 1, las grandes empresas de telecomunicaciones que intercambiar tráfico directamente "a través" a todas las otras redes de nivel 1 a través de acuerdos de interconexión pendientes de pago. Nivel 2 redes de compra de tránsito a Internet desde otro ISP para llegar a por lo menos algunas partes de la Internet mundial, aunque también pueden participar en la interconexión no remunerado (sobre todo para los socios locales de un tamaño similar). ISP puede utilizar un solo "aguas arriba" proveedor de conectividad, o utilizar multihoming para proporcionar protección contra los problemas con los enlaces individuales. Puntos de intercambio Internet crear conexiones físicas entre múltiples ISPs, a menudo alojados en edificios de propiedad de terceras partes independientes.[cita requerida]
Los ordenadores y routers utilizan las tablas de enrutamiento para dirigir los paquetes IP entre las máquinas conectadas localmente. Las tablas pueden ser construidos de forma manual o automáticamente a través de DHCP para un equipo individual o un protocolo de enrutamiento para los routers de sí mismos. En un solo homed situaciones, una ruta por defecto por lo general apunta hacia "arriba" hacia un ISP proporciona el transporte. De más alto nivel de los ISP utilizan el Border Gateway Protocol para solucionar rutas de acceso a un determinado rango de direcciones IP a través de las complejas conexiones de la Internet global. [cita requerida]
Las instituciones académicas, las grandes empresas, gobiernos y otras organizaciones pueden realizar el mismo papel que los ISP, con la participación en el intercambio de tráfico y tránsito de la compra en nombre de sus redes internas de las computadoras individuales. Las redes de investigación tienden a interconectarse en subredes grandes como GEANT, GLORIAD, Internet2, y de investigación nacional del Reino Unido y la red de la educación, Janet. Estos a su vez se construyen alrededor de las redes más pequeñas (véase la lista de organizaciones académicas de redes informáticas).[cita requerida]
No todas las redes de ordenadores están conectados a Internet. Por ejemplo, algunos clasificados los sitios web de los Estados sólo son accesibles desde redes seguras independientes. [cita requerida]
Acceso a Internet


Esquema con las tecnologías relacionadas al Internet actual.
Los métodos comunes de acceso a Internet en los hogares incluyen dial-up, banda ancha fija (a través de cable coaxial, cables de fibra óptica o cobre),25 Wi-Fi, televisión vía satélite y teléfonos celulares con tecnología 3G/4G. Los lugares públicos de uso del Internet incluyen bibliotecas y cafés de internet, donde los ordenadores con conexión a Internet están disponibles. También hay puntos de acceso a Internet en muchos lugares públicos, como salas de los aeropuertos y cafeterías, en algunos casos sólo para usos de corta duración. Se utilizan varios términos, como "kiosco de Internet", "terminal de acceso público", y "teléfonos públicos Web". Muchos hoteles ahora también tienen terminales de uso público, las cuales por lo general basados en honorarios. Estos terminales son muy visitada para el uso de varios clientes, como reserva de entradas, depósito bancario, pago en línea, etc Wi-Fi ofrece acceso inalámbrico a las redes informáticas, y por lo tanto, puede hacerlo a la propia Internet. Hotspots les reconocen ese derecho incluye Wi-Fi de los cafés, donde los aspirantes a ser los usuarios necesitan para llevar a sus propios dispositivos inalámbricos, tales como un ordenador portátil o PDA. Estos servicios pueden ser gratis para todos, gratuita para los clientes solamente, o de pago. Un punto de acceso no tiene por qué estar limitado a un lugar confinado. Un campus entero o parque, o incluso una ciudad entera puede ser activado.".31 32
Los esfuerzos de base han dado lugar a redes inalámbricas comunitarias. Comerciales servicios Wi-Fi cubren grandes áreas de la ciudad están en su lugar en Londres, Viena, Toronto, San Francisco, Filadelfia, Chicago y Pittsburgh. El Internet se puede acceder desde lugares tales como un banco del parque.Aparte de Wi-Fi, se han realizado experimentos con propiedad de las redes móviles inalámbricas como Ricochet, varios servicios de alta velocidad de datos a través de redes de telefonía celular, y servicios inalámbricos fijos . De gama alta los teléfonos móviles como teléfonos inteligentes en general, cuentan con acceso a Internet a través de la red telefónica. Navegadores web como Opera están disponibles en estos teléfonos avanzados, que también puede ejecutar una amplia variedad de software de Internet. Más teléfonos móviles con acceso a Internet que los PC, aunque esto no es tan ampliamente utilizado. El proveedor de acceso a Internet y la matriz del protocolo se diferencia de los métodos utilizados para obtener en línea.
Un apagón de Internet o interrupción puede ser causada por interrupciones locales de señalización. Las interrupciones de cables de comunicaciones submarinos pueden causar apagones o desaceleraciones a grandes áreas, tales como en la interrupción submarino 2008 por cable. Los países menos desarrollados son más vulnerables debido a un pequeño número de enlaces de alta capacidad. Cables de tierra también son vulnerables, como en 2011, cuando una mujer cavando en busca de chatarra de metal cortado la mayor parte de conectividad para el país de Armenia. Internet apagones que afectan a los países casi todo se puede lograr por los gobiernos como una forma de censura en Internet, como en el bloqueo de Internet en Egipto, en el que aproximadamente el 93% de las redes no tenían acceso en 2011 en un intento por detener la movilización de protestas contra el gobierno.
En un estudio norteamericano en el año 2005, el porcentaje de hombres que utilizan Internet era muy ligeramente por encima del porcentaje de las mujeres, aunque esta diferencia invertida en los menores de 30. Los hombres se conectaron más a menudo, pasan más tiempo en línea, y eran más propensos a ser usuarios de banda ancha, mientras que las mujeres tienden a hacer mayor uso de las oportunidades de comunicación (como el correo electrónico). Los hombres eran más propensos a utilizar el Internet para pagar sus cuentas, participar en las subastas, y para la recreación, tales como la descarga de música y videos. Hombres y mujeres tenían las mismas probabilidades de utilizar Internet para hacer compras y la banca. Los estudios más recientes indican que en 2008, las mujeres superaban en número a los hombres de manera significativa en la mayoría de los sitios de redes sociales, como Facebook y Myspace, aunque las relaciones variaban con la edad. Además, las mujeres vieron más contenido de streaming, mientras que los hombres descargaron más En cuanto a los blogs, los hombres eran más propensos al blog en el primer lugar;. entre los que el blog, los hombres eran más propensos a tener un blog profesional, mientras que las mujeres eran más propensas a tener un blog personal.
Nombres de dominio
Artículo principal: Dominio de Internet.
La Corporación de Internet para los Nombres y los Números Asignados (ICANN) es la autoridad que coordina la asignación de identificadores únicos en Internet, incluyendo nombres de dominio, direcciones de Protocolos de Internet, números del puerto del protocolo y de parámetros. Un nombre global unificado (es decir, un sistema de nombres exclusivos para sostener cada dominio) es esencial para que Internet funcione.
El ICANN tiene su sede en California, supervisado por una Junta Directiva Internacional con comunidades técnicas, comerciales, académicas y ONG. El gobierno de los Estados Unidos continúa teniendo un papel privilegiado en cambios aprobados en el Domain Name System. Como Internet es una red distribuida que abarca muchas redes voluntariamente interconectadas, Internet, como tal, no tiene ningún cuerpo que lo gobierne.
Usos modernos

El Internet moderno permite una mayor flexibilidad en las horas de trabajo y la ubicación. Con el Internet se puede acceder a casi cualquier lugar,a través de dispositivos móviles de Internet. Los teléfonos móviles, tarjetas de datos, consolas de juegos portátiles y routers celulares permiten a los usuarios conectarse a Internet de forma inalámbrica. Dentro de las limitaciones impuestas por las pantallas pequeñas y otras instalaciones limitadas de estos dispositivos de bolsillo, los servicios de Internet, incluyendo correo electrónico y la web, pueden estar disponibles al público en general. Los proveedores de internet puede restringir los servicios que ofrece y las cargas de datos móviles puede ser significativamente mayor que otros métodos de acceso.
Se puede encontrar material didáctico a todos los niveles, desde preescolar hasta post-doctoral está disponible en sitios web. Los ejemplos van desde CBeebies, a través de la escuela y secundaria guías de revisión, universidades virtuales, al acceso a la gama alta de literatura académica a través de la talla de Google Académico. Para la educación a distancia, ayuda con las tareas y otras asignaciones, el auto-aprendizaje guiado, entreteniendo el tiempo libre, o simplemente buscar más información sobre un hecho interesante, nunca ha sido más fácil para la gente a acceder a la información educativa en cualquier nivel, desde cualquier lugar. El Internet en general es un importante facilitador de la educación tanto formal como informal.
El bajo costo y el intercambio casi instantáneo de las ideas, conocimientos y habilidades han hecho el trabajo colaborativo dramáticamente más fácil, con la ayuda del software de colaboración. De chat, ya sea en forma de una sala de chat IRC o del canal, a través de un sistema de mensajería instantánea, o un sitio web de redes sociales, permite a los colegas a mantenerse en contacto de una manera muy conveniente cuando se trabaja en sus computadoras durante el día. Los mensajes pueden ser intercambiados de forma más rápida y cómodamente a través del correo electrónico. Estos sistemas pueden permitir que los archivos que se intercambian, dibujos e imágenes para ser compartidas, o el contacto de voz y vídeo entre los miembros del equipo.
Sistemas de gestión de contenido permiten la colaboración a los equipos trabajar en conjuntos de documentos compartidos al mismo tiempo, sin destruir accidentalmente el trabajo del otro. Los equipos de negocio y el proyecto pueden compartir calendarios, así como documentos y otra información. Esta colaboración se produce en una amplia variedad de áreas, incluyendo la investigación científica, desarrollo de software, planificación de la conferencia, el activismo político y la escritura creativa. La colaboración social y político es cada vez más generalizada, como acceso a Internet y difusión conocimientos de informática.
La Internet permite a los usuarios de computadoras acceder remotamente a otros equipos y almacenes de información fácilmente, donde quiera que estén. Pueden hacer esto con o sin la seguridad informática, es decir, la autenticación y de cifrado, dependiendo de los requerimientos. Esto es alentador, nuevas formas de trabajo, la colaboración y la información en muchas industrias. Un contador sentado en su casa puede auditar los libros de una empresa con sede en otro país. Estas cuentas podrían haber sido creado por trabajo desde casa tenedores de libros, en otros lugares remotos, con base en la información enviada por correo electrónico a las oficinas de todo el mundo. Algunas de estas cosas eran posibles antes del uso generalizado de Internet, pero el costo de líneas privadas arrendadas se han hecho muchos de ellos no factibles en la práctica. Un empleado de oficina lejos de su escritorio, tal vez al otro lado del mundo en un viaje de negocios o de placer, pueden acceder a sus correos electrónicos, acceder a sus datos usando la computación en nube, o abrir una sesión de escritorio remoto a su PC de la oficina usando un seguro virtual Private Network (VPN) en Internet. Esto puede dar al trabajador el acceso completo a todos sus archivos normales y datos, incluyendo aplicaciones de correo electrónico y otros, mientras que fuera de la oficina. Este concepto ha sido remitido a los administradores del sistema como la pesadilla privada virtual, [36], ya que amplía el perímetro de seguridad de una red corporativa en lugares remotos y las casas de sus empleados.
Impacto social



Sitios de Internet por países.
Internet tiene un impacto profundo en el mundo laboral, el ocio y el conocimiento a nivel mundial. Gracias a la web, millones de personas tienen acceso fácil e inmediato a una cantidad extensa y diversa de información en línea. Un ejemplo de esto es el desarrollo y la distribución de colaboración del software de Free/Libre/Open-Source (FLOSS) por ejemplo GNU, Linux, Mozilla y OpenOffice.org.33 34
Comparado a las enciclopedias y a las bibliotecas tradicionales, la web ha permitido una descentralización repentina y extrema de la información y de los datos. Algunas compañías e individuos han adoptado el uso de los weblogs, que se utilizan en gran parte como diarios actualizables. Algunas organizaciones comerciales animan a su personal para incorporar sus áreas de especialización en sus sitios, con la esperanza de que impresionen a los visitantes con conocimiento experto e información libre.35
Internet ha llegado a gran parte de los hogares y de las empresas de los países ricos. En este aspecto se ha abierto una brecha digital con los países pobres, en los cuales la penetración de Internet y las nuevas tecnologías es muy limitada para las personas.
No obstante, en el transcurso del tiempo se ha venido extendiendo el acceso a Internet en casi todas las regiones del mundo, de modo que es relativamente sencillo encontrar por lo menos 2 computadoras conectadas en regiones remotas.[cita requerida]
Desde una perspectiva cultural del conocimiento, Internet ha sido una ventaja y una responsabilidad. Para la gente que está interesada en otras culturas, la red de redes proporciona una cantidad significativa de información y de una interactividad que sería inasequible de otra manera.[cita requerida]
Internet entró como una herramienta de globalización, poniendo fin al aislamiento de culturas. Debido a su rápida masificación e incorporación en la vida del ser humano, el espacio virtual es actualizado constantemente de información, fidedigna o irrelevante.[cita requerida]
Ocio
Muchos utilizan Internet para descargar música, películas y otros trabajos. Hay fuentes que cobran por su uso y otras gratuitas, usando los servidores centralizados y distribuidos, las tecnologías de P2P. Otros utilizan la red para tener acceso a las noticias y el estado del tiempo.
La mensajería instantánea o chat y el correo electrónico son algunos de los servicios de uso más extendido. En muchas ocasiones los proveedores de dichos servicios brindan a sus afiliados servicios adicionales como la creación de espacios y perfiles públicos en donde los internautas tienen la posibilidad de colocar en la red fotografías y comentarios personales. Se especula actualmente si tales sistemas de comunicación fomentan o restringen el contacto de persona a persona entre los seres humanos.[cita requerida]
En tiempos más recientes han cobrado auge portales como YouTube o Facebook, en donde los usuarios pueden tener acceso a una gran variedad de videos sobre prácticamente cualquier tema.
La pornografía representa buena parte del tráfico en Internet, siendo a menudo un aspecto controvertido de la red por las implicaciones morales que le acompañan. Proporciona a menudo una fuente significativa del rédito de publicidad para otros sitios. Muchos gobiernos han procurado sin éxito poner restricciones en el uso de ambas industrias en Internet.
El sistema multijugador constituye también buena parte del ocio en Internet.
Internet y su evolución
Inicialmente Internet tenía un objetivo claro. Se navegaba en Internet para algo muy concreto: búsquedas de información, generalmente. Ahora quizás también, pero sin duda alguna hoy es más probable perderse en la red, debido al inmenso abanico de posibilidades que brinda. Hoy en día, la sensación que produce Internet es un ruido, una serie de interferencias, una explosión de ideas distintas, de personas diferentes, de pensamientos distintos de tantas posibilidades que, en ocasiones, puede resultar excesivo. El crecimiento o más bien la incorporación de tantas personas a la red hace que las calles de lo que en principio era una pequeña ciudad llamada Internet se conviertan en todo un planeta extremadamente conectado entre sí entre todos sus miembros. El hecho de que Internet haya aumentado tanto implica una mayor cantidad de relaciones virtuales entre personas. Es posible concluir que cuando una persona tenga una necesidad de conocimiento no escrito en libros, puede recurrir a una fuente más acorde a su necesidad. Como ahora esta fuente es posible en Internet. Como toda gran revolución, Internet augura una nueva era de diferentes métodos de resolución de problemas creados a partir de soluciones anteriores. Algunos sienten que Internet produce la sensación que todos han sentido sin duda alguna vez; produce la esperanza que es necesaria cuando se quiere conseguir algo. Es un despertar de intenciones que jamás antes la tecnología había logrado en la población mundial. Para algunos usuarios Internet genera una sensación de cercanía, empatía, comprensión y, a la vez, de confusión, discusión, lucha y conflictos que los mismos usuarios consideran la vida misma.
La evolución del internet radica en la migración de la versión y uso del IPv4 a IPv6. IP es un protocolo que no está orientado a la conexión y no es completamente seguro en la transmisión de los datos, lo anterior permite que las conexiones inalámbricas tengan siempre movilidad. Por otro lado, para mejorar la confiabilidad se usa el protocolo TCP. El protocolo IP, es la forma en la que se enrutan los paquetes entre las redes. Cada nodo en cada una de las redes tiene una dirección IP diferente. Para garantizar un enrutamiento correcto, IP agrega su propio encabezado a los paquetes. Este proceso se apoya en tablas de enrutamiento que son actualizadas permanentemente. En caso de que el paquete de datos sea demasiado grande, el protocolo IP lo fragmenta para poderlo transportar. La versión que se está ocupando de este protocolo es la 4, donde se tiene conectividad, pero también ciertas restricciones de espacio. Es por eso que la grandes empresas provedoras del servicio de internet migraran a la versión IPv6.
La nueva versión del protocolo IP Internet Protocol recibe el nombre de IPv6, aunque es también conocido comúnmente como IPng Internet Protocol Next Generation. IPv6 ha sido diseñado como un paso evolutivo desde IPv4, por lo que no representa un cambio radical respecto IPv4. Las características de IPv4 que trabajan correctamente se han mantenido en el nuevo protocolo, mientras que se han suprimido aquéllas que no funcionaban bien. De todos modos, los cambios que se introducen en esta nueva versión son muchos y de gran importancia debido a las bondades que ofrecen. A principios de 2010, quedaban menos del 10% de IPs sin asignar. En la semana del 3 de febrero del 2011, la IANA (Agencia Internacional de Asignación de Números de Internet, por sus siglas en inglés) entregó el último bloque de direcciones disponibles (33 millones) a la organización encargada de asignar IPs en Asia, un mercado que está en auge y no tardará en consumirlas todas. IPv4 posibilita 4,294,967,296 (232) direcciones de red diferentes, un número inadecuado para dar una dirección a cada persona del planeta, y mucho menos a cada vehículo, teléfono, PDA, etcétera. En cambio, IPv6 admite 340.282.366.920.938.463.463.374.607.431.768.211.456 (2128 o 340 sextillones de direcciones) —cerca de 6,7 × 1017 (670 milbillones) de direcciones por cada milímetro cuadrado de la superficie de La Tierra. Otra vía para la popularización del protocolo es la adopción de este por parte de instituciones. El Gobierno de los Estados Unidos ordenó el despliegue de IPv6 por todas sus agencias federales en el año 2008.
Fuente de información
En 2009, un estudio realizado en Estados Unidos indicó que un 56% de los 3.030 adultos estadounidenses entrevistados en una encuesta online manifestó que si tuviera que escoger una sola fuente de información, elegiría Internet, mientras que un 21% preferiría la televisión y tanto los periódicos como la radio sería la opción de un 10% de los encuestados. Dicho estudio posiciona a los medios digitales en una posición privilegiada en cuanto a la búsqueda de información y refleja un aumento de la credibilidad en dichos medios.36 37
Buscadores
Un buscador se define como el sistema informático que indexa archivos almacenados en servidores web cuando se solicita información sobre algún tema. Por medio de palabras clave, se realiza la exploración y el buscador muestra una lista de direcciones con los temas relacionados. Existen diferentes formas de clasificar los buscadores según el proceso de sondeo que realizan. La clasificación más frecuente los divide en: índices o directorios temáticos, motores de búsqueda y metabuscadores.
Índices o directorios temáticos
Los índices o buscadores temáticos son sistemas creados con la finalidad de diseñar un catálogo por temas, definiendo la clasificación por lo que se puede considerar que los contenidos ofrecidos en estas páginas tienes ya cierto orden y calidad.
La función de este tipo de sistemas es presentar algunos de los datos de las páginas más importantes, desde el punto de vista del tema y no de lo que se contiene. Los resultados de la búsqueda de esta de estos índices pueden ser muy limitados ya que los directorios temáticos, las bases de datos de direcciones son muy pequeñas, además de que puede ser posible que el contenido de las páginas no esté completamente al día.
Motores de búsqueda
Artículo principal: Motor de búsqueda.
Este tipo de buscadores son los de uso más común, basados en aplicaciones llamadas spiders ("arañas") o robots, que buscan la información con base en las palabras escritas, haciendo una recopilación sobre el contenido de las páginas y mostrando como resultado aquéllas que contengan la palabra o frase en alguna parte del texto.
Metabuscadores
Los metabuscadores son sistemas que localizan información en los motores de búsqueda más utilizados, realizan un análisis y seleccionan sus propios resultados. No tienen una base de datos, por lo que no almacenan páginas web y realizan una búsqueda automática en las bases de datos de otros buscadores, de los cuales toma un determinado rango de registros con los resultados más relevantes y así poder tener la información necesaria.
Trabajo
Con la aparición de Internet y de las conexiones de alta velocidad disponibles al público, Internet ha alterado de manera significativa la manera de trabajar de algunas personas al poder hacerlo desde sus respectivos hogares. Internet ha permitido a estas personas mayor flexibilidad en términos de horarios y de localización, contrariamente a la jornada laboral tradicional, que suele ocupar la mañana y parte de la tarde, en la cual los empleados se desplazan al lugar de trabajo.
Un experto contable asentado en un país puede revisar los libros de una compañía en otro país, en un servidor situado en un tercer país que sea mantenido remotamente por los especialistas en un cuarto.
Internet y sobre todo los blogs han dado a los trabajadores un foro en el cual expresar sus opiniones sobre sus empleos, jefes y compañeros, creando una cantidad masiva de información y de datos sobre el trabajo que está siendo recogido actualmente por el colegio de abogados de Harvard.
Internet ha impulsado el fenómeno de la Globalización y junto con la llamada desmaterialización de la economía ha dado lugar al nacimiento de una Nueva Economía caracterizada por la utilización de la red en todos los procesos de incremento de valor de la empresa
Publicidad
Artículo principal: Publicidad en Internet.
Internet se ha convertido en el medio más fácilmente medible y de más alto crecimiento en la historia. Actualmente existen muchas empresas que obtienen dinero de la publicidad en Internet. Además, existen mucha ventajas que la publicidad interactiva ofrece tanto para el usuario como para los anunciantes.
Censura
Es extremadamente difícil, si no imposible, establecer control centralizado y global de Internet. Algunos gobiernos, de naciones tales como Irán, Arabia Saudita, Corea del Norte, la República Popular de China y Estados Unidos restringen el que personas de sus países puedan ver ciertos contenidos de Internet, políticos y religiosos, considerados contrarios a sus criterios. La censura se hace, a veces, mediante filtros controlados por el gobierno, apoyados en leyes o motivos culturales, castigando la propagación de estos contenidos. Sin embargo, muchos usuarios de Internet pueden burlar estos filtros, pues la mayoría del contenido de Internet está disponible en todo el mundo, sin importar donde se esté, siempre y cuando se tengan la habilidad y los medios técnicos necesarios.38
Otra posibilidad, como en el caso de China, es que este tipo de medidas se combine con la autocensura de las propias empresas proveedoras de servicios de Internet, serían las empresas equivalentes a Telefónicas (proveedores de servicios de Internet), para así ajustarse a las demandas del gobierno del país receptor.39
Sin embargo algunos buscadores como Google, han tomado la decisión de amenazar al gobierno de China con la retirada de sus servicios en dicho país si no se abole la censura en Internet. Aunque posteriormente haya negado que tomará dichas medidas40
Para saltarse cualquier tipo de censura o coerción en el uso de internet, se han desarrollado múltiples tecnologías y herrramientas. Entre ellas cabe resaltar por un lado las técnicas y herramientas criptológicas y por otro lado las tecnologías encuadradas en la llamada Darknet. La Darknet es una colección de redes y tecnologías que persiguen la consecución de un anonimato total de los comunicantes, creando de esta forma una zona de total libertad. Aunque actualmente no se suele considerar que consigan un anonimato total, sin embargo, sí consiguen una mejora sustancial en la privacidad de los usuarios. Este tipo de redes se han usado intensamente, por ejemplo, en los sucesos de la primavera árabe y en todo el entramado de wikileaks para la publicación de información confidencial. Las tecnologías de la Darknet están en fase de perfeccionamiento y mejora de sus prestaciones.41
Internet en obras de ficción
Artículo principal: Internet en la ciencia ficción.
Internet aparece muchas veces en obras de ficción. Puede ser un elemento más de la trama, algo que se usa de forma habitual tal y como se hace en la vida real.
También hay obras donde Internet se presenta como un medio maligno que permite a hackers sembrar el caos, alterar registros, como por ejemplo, las películas La Red, Live Free or Die Hard, etc. Hay otras obras donde aparece como una gran oportunidad para la libertad de expresión (por ejemplo, la película FAQ: Frequently Asked Questions).
Tamaño de Internet

Cantidad de páginas
Es difícil establecer el tamaño exacto de Internet, ya que éste crece continuamente y no existe una manera fiable de acceder a todo su contenido y, por consiguiente, de determinar su tamaño.
Un estudio del año 2005 usando distintos motores de búsqueda (Google, MSN, Yahoo! y Ask Jeeves) estimaba que existían 11.500 millones de páginas Web.42
Otro estudio del año 2008 estimaba que la cantidad había ascendido a 63.000 millones de páginas web.43
Para estimar esta cantidad se usan las webs indexadas por los distintos motores de búsqueda, pero este método no abarca todas las páginas online. Utilizando este criterio Internet se puede dividir en:
Internet superficial: Incluye los servicios indexados por los motores de búsqueda.
Internet profunda: Incluye el resto de servicios no indexados como páginas en Flash, páginas protegidas por contraseña, inaccesibles para las arañas, etc. Se estima que el tamaño de la Internet profunda es varios órdenes de magnitud mayor que el de Internet superficial.
Cantidad de usuarios
El número de usuarios aumenta de forma continua. En 2006 se estimaba el número de internautas en 1.100 millones. Para el 2016 se estima que el número ascenderá a 2.000 millones.
Usuarios



Grafica que representa el numero de usuarios de Internet.44 45


Idiomas usados en internet.1
En general el uso de Internet ha experimentado un tremendo crecimiento. De 2000 a 2009, el número de usuarios de Internet a nivel mundial aumentó 394 millones a 1858 millones. En 2010, el 22 por ciento de la población mundial tenía acceso a las computadoras con 1 mil millones de búsquedas en Google cada día, 300 millones de usuarios de Internet leen blogs, y 2 mil millones de videos vistos al día en YouTube.46 47
El idioma predominante de la comunicación en internet ha sido inglés. Este puede ser el resultado del origen de la internet, así como el papel de la lengua como lengua franca. Los primeros sistemas informáticos se limitaban a los personajes en el Código Estándar Americano para Intercambio de Información (ASCII), un subconjunto del alfabeto latino.48
Después de inglés (27%), los idiomas más solicitados en la World Wide Web son el chino (23%), español (8%), japónes (5%), portugués y alemán (4% cada uno), árabe, francés y ruso (3% cada uno) y coreano (2%). Por regiones, el 42% de los usuarios de Internet en el mundo están en Asia, 24% en Europa, el 14% en América del Norte, el 10% en Iberoamérica y el Caribe, adoptado en conjunto, un 6% en África, 3% en el Oriente Medio y un 1% en Oceanía. Las tecnologías de la internet se han desarrollado lo suficiente en los últimos años, especialmente en el uso de Unicode, que con buenas instalaciones están disponibles para el desarrollo y la comunicación en los idiomas más utilizados del mundo. Sin embargo, algunos problemas, tales como la visualización incorrecta de caracteres de algunos idiomas, aún permanecen.49
En un estudio norteamericano en el año 2005, el porcentaje de varones que utilizan internet estaba muy ligeramente por encima del porcentaje de las mujeres, aunque esta diferencia estaba invertida en los menores de 30 años. Los hombres se conectaron más a menudo, pasan más tiempo en línea, y eran más propensos a ser usuarios de banda ancha, mientras que las mujeres tienden a hacer mayor uso de las oportunidades de comunicación, como el correo electrónico. Los hombres eran más propensos a utilizar el internet para pagar sus cuentas, participar en las subastas, y para la recreación, tales como la descarga de música y videos. Ambos sexos tenían las mismas probabilidades de utilizar internet para hacer compras y la banca. Los estudios más recientes indican que en 2008, las mujeres superaban en número a los hombres de manera significativa en la mayoría de los sitios de redes sociales, como Facebook y Myspace, aunque las relaciones variaban con la edad. Además, las mujeres vieron más contenido de streaming, mientras que los hombres descargaron más. En cuanto a los blogs, los varones eran más propensos a tener uno profesional, mientras que las mujeres eran más propensas a tener un blog personal.



Intranet






Existen desacuerdos sobre la neutralidad en el punto de vista de la versión actual de este artículo o sección.

En la página de discusión puedes consultar el debate al respecto.

Una intranet es una red de ordenadores privados que utiliza tecnología Internet para compartir dentro de una organización parte de sus sistemas de información y sistemas operacionales. El término intranet se utiliza en oposición a Internet, una red entre organizaciones, haciendo referencia por contra a una red comprendida en el ámbito de una organización.

[editar]Beneficios de la intranet de los centros docentes

Capacidad de compartir recursos (impresoras, escáner...) y posibilidad de conexión a Internet (acceso a la información de la red y a sus posibilidades comunicativas).
Alojamiento de páginas web, tanto la del centro como de estudiantes o profesores, que pueden consultarse con los navegadores desde todos los ordenadores de la Intranet o desde cualquier ordenador externo que esté conectado a Internet.
Servicios de almacenamiento de información. Espacios de disco virtual a los que se puede acceder para guardar y recuperar información desde los ordenadores del centro y también desde cualquier equipo externo conectado a Internet. Cada profesor y cada estudiante puede tener una agenda en el disco virtual.
Servicio de correo electrónico, que puede incluir diversas funcionalidades (buzón de correo electrónico, servicio de webmail, servicio de mensajería instantánea...).
Foros, canales bidireccionales de comunicación entre los miembros de la comunidad escolar, que permiten el intercambio de opiniones, experiencias... Algunos de estos foros pueden estar permanentemente en funcionamiento, y otros pueden abrirse temporalmente a petición de algún profesor, grupo de alumnos... Por ejemplo, tablones de anuncios y servicios de chat y videoconferencia.
Instrumentos diversos que permiten, a las personas autorizadas a ello, la realización de diversos trabajos tales como gestiones de tutoría, plantillas que faciliten a profesores y alumnos la creación de fichas, test, periódicos; gestiones de secretaria y dirección; de biblioteca; y gestiones administrativas como petición de certificados, trámites de matrícula, notas de los estudiantes, profesores, etc.
[editar]Foros, wikis, blogs y redes sociales dentro de las Intranets

Dentro de una Intranet (Red Interna) además Servidores de Archivos, Servidores de Impresión, Servidores de Correos, Telefonía IP entre otros, también es muy típico encontrar Servidores Web los cuales contienen herramientas de comunicación e información tales como: Foros, wikis, blogs y redes sociales.
Todavía hay muchas organizaciones que muestran evidencias de las primeras etapas de las Aplicaciones Web dentro de sus Redes Internas (Intranets), cuando era sólo un medio para transmitir o compartir información y recursos a los empleados.
Las Aplicaciones Web de hoy se nutren de "modelos" de comunicación como foros, wikis, blogs y redes sociales. Son sus verdaderos motores y han inspirado su nuevo rol en el mundo empresarial: un verdadero "canal de interacción virtual", con alto impacto en la comunicación interna y objetivos comúnmente centrados en la innovación, la mejora permanente y la gestión del conocimiento.
Las herramientas colaborativas de la Web 2.0 marcan una nueva lógica que está cambiando las reglas de juego en las Intranets corporativas, lo cual significa un desafío para las empresas, que deben analizar si están preparadas para la filosofía 2.0, es decir, para aceptar críticas, cuestionamientos u opiniones negativas de un colaborador que aparezcan a la vista de toda la organización.1
[editar]Véase también

 Portal:Internet. Contenido relacionado con Internet.
↑ http://www.cronista.com/itbusiness/Comunicacion-interna-2.0-20111004-0012.html

La configuración de la intranet responde a características institucionales, es decir, esto es variable en función del esquema organizacional de la institución.
Intranet es una configuración de redes no de páginas web. Ciertamente que la red hará referencia y uso de las webs, pero la red interna es la vinculación mediante el soft de los hards existentes en esa institución.

http://es.wikipedia.org/wiki/Intranet

Extranet

Una extranet es una red privada que utiliza protocolos de Internet, protocolos de comunicación y probablemente infraestructura pública de comunicación para compartir de forma segura parte de la información u operación propia de una organización con proveedores, compradores, socios, clientes o cualquier otro negocio u organización. Se puede decir en otras palabras que una extranet es parte de la Intranet de una organización que se extiende a usuarios fuera de ella. Usualmente utilizando Internet. La extranet suele tener un acceso semiprivado, para acceder a la extranet de una empresa no necesariamente el usuario ha de ser trabajador de la empresa, pero si tener un vínculo con la entidad. Es por ello que una extranet requiere o necesita un grado de seguridad, para que no pueda acceder cualquier persona. Otra característica de la extranet es que se puede utilizar como una Intranet de colaboración con otras compañías.

Los siguientes ejemplos muestran las aplicaciones de la extranet, ya que pueden ser muy variadas dichas aplicaciones:
Groupware, diversas compañías participan en el desarrollo de nuevas aplicaciones con un objetivo común.
Creación de foros.
Compañías empresariales participan y desarrollan programas educativos o de formación.
Para compañías que son parte de un objetivo común de trabajo, mediante la extranet, pueden dirigir y controlar los proyectos comunes.
Una empresa puede participar en redes de conocimiento junto con universidades, asociaciones y demás centros en programas de formación, en actividades de investigación y desarrollo, en bolsas de trabajo, etc.


El computador es indispensable para las conexiones a la extranet
[editar]Beneficios empresariales de la extranet

Permite hacer transacciones seguras entre los sistemas internos de la empresa.
Mediante aplicaciones de la extranet los trabajadores de la empresa pueden obtener fácil y rápidamente la información sobre los clientes, proveedores y socios.
Reducción de costos y ahorro temporal como económico para la empresa
Totalmente basada en Internet
Desarrollado en cualquier herramienta de programación
Independiente del motor de Base de datos
Dirección en Internet bajo su propio dominio
Conexión de base de datos del sistema contable de la empresa al sistema
Diseñada armónicamente con el mismo estilo del sitio web de su empresa

http://es.wikipedia.org/wiki/Extranet


World wide web


En informática, la World Wide Web (WWW) o Red informática mundial1 es un sistema de distribución de información basado en hipertexto o hipermedios enlazados y accesibles a través de Internet. Con un navegador web, un usuario visualiza sitios web compuestos de páginas web que pueden contener texto, imágenes, vídeos u otros contenidos multimedia, y navega a través de ellas usando hiperenlaces.
La Web fue creada alrededor de 1989 por el inglés Tim Berners-Lee con la ayuda del belga Robert Cailliau mientras trabajaban en el CERN en Ginebra, Suiza, y publicado en 1992. Desde entonces, Berners-Lee ha jugado un papel activo guiando el desarrollo de estándares Web (como los lenguajes de marcado con los que se crean las páginas web), y en los últimos años ha abogado por su visión de una Web semántica.

El primer paso consiste en traducir la parte nombre del servidor de la URL en una dirección IP usando la base de datos distribuida de Internet conocida como DNS. Esta dirección IP es necesaria para contactar con el servidor web y poder enviarle paquetes de datos.
El siguiente paso es enviar una petición HTTP al servidor Web solicitando el recurso. En el caso de una página web típica, primero se solicita el texto HTML y luego es inmediatamente analizado por el navegador, el cual, después, hace peticiones adicionales para los gráficos y otros ficheros que formen parte de la página. Las estadísticas de popularidad de un sitio web normalmente están basadas en el número de páginas vistas o las peticiones de servidor asociadas, o peticiones de fichero, que tienen lugar.
Al recibir los ficheros solicitados desde el servidor web, el navegador renderiza la página tal y como se describe en el código HTML, el CSS y otros lenguajes web. Al final se incorporan las imágenes y otros recursos para producir la página que ve el usuario en su pantalla.




Historia
Este NeXTcube usado por Berners-Lee en el CERN se convirtió en el primer servidor web.
La idea subyacente de la Web se remonta a la propuesta de Vannevar Bush en los años 40 sobre un sistema similar: a grandes rasgos, un entramado de información distribuida con una interfaz operativa que permitía el acceso tanto a la misma como a otros artículos relevantes determinados por claves. Este proyecto nunca fue materializado, quedando relegado al plano teórico bajo el nombre de Memex. Es en los años 50 cuando Ted Nelson realiza la primera referencia a un sistema de hipertexto, donde la información es enlazada de forma libre. Pero no es hasta 1980, con un soporte operativo tecnológico para la distribución de información en redes informáticas, cuando Tim Berners-Lee propone ENQUIRE al CERN (refiriéndose a Enquire Within Upon Everything, en castellano Preguntando de Todo Sobre Todo), donde se materializa la realización práctica de este concepto de incipientes nociones de la Web.
En marzo de 1989, Tim Berners Lee, ya como personal de la división DD del CERN, redacta la propuesta,2 que referenciaba a ENQUIRE y describía un sistema de gestión de información más elaborado. No hubo un bautizo oficial o un acuñamiento del término web en esas referencias iniciales, utilizándose para tal efecto el término mesh. Sin embargo, el World Wide Web ya había nacido. Con la ayuda de Robert Cailliau, se publicó una propuesta más formal para la world wide web3 el 6 de agosto de 1991.
Berners-Lee usó un NeXTcube como el primer servidor web del mundo y también escribió el primer navegador web, WorldWideWeb en 1991. En las Navidades del mismo año, Berners-Lee había creado todas las herramientas necesarias para que una web funcionase:4 el primer navegador web (el cual también era un editor web), el primer servidor web y las primeras páginas web5 que al mismo tiempo describían el proyecto.
El 6 de agosto de 1991, envió un pequeño resumen del proyecto World Wide Web al newsgroup6 alt.hypertext. Esta fecha también señala el debut de la web como un servicio disponible públicamente en Internet.
El concepto, subyacente y crucial, del hipertexto tiene sus orígenes en viejos proyectos de la década de los 60, como el Proyecto Xanadu de Ted Nelson y el sistema on-line NLS de Douglas Engelbart. Los dos, Nelson y Engelbart, estaban a su vez inspirados por el ya citado sistema basado en microfilm "memex", de Vannevar Bush.
El gran avance de Berners-Lee fue unir hipertexto e Internet. En su libro Weaving the Web (en castellano, Tejiendo la Red), explica que él había sugerido repetidamente que la unión entre las dos tecnologías era posible para miembros de las dos comunidades tecnológicas, pero como nadie aceptó su invitación, decidió, finalmente, hacer frente al proyecto él mismo. En el proceso, desarrolló un sistema de identificadores únicos globales para los recursos web y también: el Uniform Resource Identifier.
World Wide Web tenía algunas diferencias de los otros sistemas de hipertexto que estaban disponibles en aquel momento:
WWW sólo requería enlaces unidireccionales en vez de los bidireccionales. Esto hacía posible que una persona enlazara a otro recurso sin necesidad de ninguna acción del propietario de ese recurso. Con ello se reducía significativamente la dificultad de implementar servidores web y navegadores (en comparación con los sistemas anteriores), pero en cambio presentaba el problema crónico de los enlaces rotos.
A diferencia de sus predecesores, como HyperCard, World Wide Web era no-propietario, haciendo posible desarrollar servidores y clientes independientemente y añadir extensiones sin restricciones de licencia.
El 30 de abril de 1993, el CERN anunció7 que la web sería gratuita para todos, sin ningún tipo de honorarios.
ViolaWWW fue un navegador bastante popular en los comienzos de la web que estaba basado en el concepto de la herramienta hipertextual de software de Mac denominada HyperCard. Sin embargo, los investigadores generalmente están de acuerdo en que el punto de inflexión de la World Wide Web comenzó con la introducción8 del navegador9 web Mosaic en 1993, un navegador gráfico desarrollado por un equipo del NCSA en la Universidad de Illinois en Urbana-Champaign (NCSA-UIUC), dirigido por Marc Andreessen. El apoyo para desarrollar Mosaic vino del High-Performance Computing and Communications Initiative, un programa de fondos iniciado por el entonces gobernador Al Gore en el High Performance Computing and Communication Act of 1991, también conocida como la Gore Bill.10 Antes del lanzamiento de Mosaic, las páginas web no integraban un amplio entorno gráfico y su popularidad fue menor que otros protocolos anteriores ya en uso sobre Internet, como el protocolo Gopher y WAIS. La interfaz gráfica de usuario de Mosaic permitió a la WWW convertirse en el protocolo de Internet más popular de una manera fulgurante...

http://es.wikipedia.org/wiki/World_Wide_Web


INFRAESTRUCTURA DE TECNOLOGÍA DE INFORMACIÓN (TI)

Se denominan tecnologías de la información y la comunicación al conjunto detecnologías que permiten la adquisición, producción, almacenamiento, tratamiento, comunicación, registro y presentación de informaciones, en forma de voz, imágenes y datos contenidos en señales de naturaleza acústica, óptica o electromagnética [1]. Las TIC incluyen la electrónica como tecnología base que soporta el desarrollo de las telecomunicaciones, la informática y el audiovisual.
Un sistema de información es un conjunto organizado de elementos, que pueden ser personas, datos, actividades o recursos materiales en general. Estos elementos interactúan entre sí para procesar información y distribuirla de manera adecuada en función de los objetivos de una organización.
el estudio de los sistemas de información surgió como una subdisciplina de las ciencias de la computación, con el objetivo de racionalizar la administración de la tecnología  dentro de las organizaciones. El campo  de estudio fue avanzando hasta pasar a ser parte de los estudios superiores dentro de la administración.

No hay comentarios:

Publicar un comentario